Search > Results

You searched for: EV190069 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV190069 1/4 Homo sapiens PC3 DG
(d)(U)C
Mariscal, Javier 2020 67%

Study summary

Full title
All authors
Javier Mariscal, Tatyana Vagner, Minhyung Kim, Bo Zhou, Andrew Chin, Mandana Zandian, Michael R Freeman, Sungyong You, Andries Zijlstra, Wei Yang, Dolores Di Vizio
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer p (show more...)Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyse the palmitoyl-proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbour proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABCC4 as prostate cancer-specific palmitoyl-proteins abundant in both EV populations. Importantly, localization of the above proteins in EVs was reduced upon inhibition of palmitoylation in the producing cells. Our results suggest that this post-translational modification may play a role in the sorting of the EV-bound secretome and possibly enable selective detection of disease biomarkers. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: CD81/ TSG101/ CD9/ HSPA5/ KRT18
non-EV:
Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PC3
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
16.2
Sample volume (mL)
0.2
Orientation
Bottom-up
Rotor type
SW 28
Speed (g)
100000
Duration (min)
230
Fraction volume (mL)
2.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
Other;Pierce 660nm
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSPA5/ KRT18
Not detected EV-associated proteins
CD81/ TSG101/ CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Modus
Reported size (nm)
1770
EV concentration
Yes
EV190069 2/4 Homo sapiens PC3 DG
(d)(U)C
Mariscal, Javier 2020 67%

Study summary

Full title
All authors
Javier Mariscal, Tatyana Vagner, Minhyung Kim, Bo Zhou, Andrew Chin, Mandana Zandian, Michael R Freeman, Sungyong You, Andries Zijlstra, Wei Yang, Dolores Di Vizio
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer p (show more...)Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyse the palmitoyl-proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbour proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABCC4 as prostate cancer-specific palmitoyl-proteins abundant in both EV populations. Importantly, localization of the above proteins in EVs was reduced upon inhibition of palmitoylation in the producing cells. Our results suggest that this post-translational modification may play a role in the sorting of the EV-bound secretome and possibly enable selective detection of disease biomarkers. (hide)
EV-METRIC
67% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: TSG101/ CD81/ CD9/ HSPA5/ KRT18
non-EV:
Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
PC3
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
16.2
Sample volume (mL)
0.2
Orientation
Bottom-up
Rotor type
SW 28
Speed (g)
100000
Duration (min)
230
Fraction volume (mL)
2.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Other;Pierce 660nm
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ TSG101/ CD81
Not detected EV-associated proteins
HSPA5/ KRT18
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Modus
Reported size (nm)
131
EV concentration
Yes
EV190069 3/4 Homo sapiens DU145 DG
(d)(U)C
Mariscal, Javier 2020 56%

Study summary

Full title
All authors
Javier Mariscal, Tatyana Vagner, Minhyung Kim, Bo Zhou, Andrew Chin, Mandana Zandian, Michael R Freeman, Sungyong You, Andries Zijlstra, Wei Yang, Dolores Di Vizio
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer p (show more...)Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyse the palmitoyl-proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbour proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABCC4 as prostate cancer-specific palmitoyl-proteins abundant in both EV populations. Importantly, localization of the above proteins in EVs was reduced upon inhibition of palmitoylation in the producing cells. Our results suggest that this post-translational modification may play a role in the sorting of the EV-bound secretome and possibly enable selective detection of disease biomarkers. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DIAPH3 Knock down
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: CD9/ HSPA5
non-EV:
Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
DU145
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
30
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
16.2
Sample volume (mL)
0.2
Orientation
Bottom-up
Rotor type
SW 28
Speed (g)
100000
Duration (min)
230
Fraction volume (mL)
2.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
10000
Characterization: Protein analysis
Protein Concentration Method
Other;Pierce 660 nm
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSPA5
Not detected EV-associated proteins
CD9
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Modus
Reported size (nm)
1650
EV concentration
Yes
EV190069 4/4 Homo sapiens DU145 DG
(d)(U)C
Mariscal, Javier 2020 56%

Study summary

Full title
All authors
Javier Mariscal, Tatyana Vagner, Minhyung Kim, Bo Zhou, Andrew Chin, Mandana Zandian, Michael R Freeman, Sungyong You, Andries Zijlstra, Wei Yang, Dolores Di Vizio
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer p (show more...)Extracellular vesicles (EVs) are membrane-enclosed particles that play an important role in cancer progression and have emerged as a promising source of circulating biomarkers. Protein S-acylation, frequently called palmitoylation, has been proposed as a post-translational mechanism that modulates the dynamics of EV biogenesis and protein cargo sorting. However, technical challenges have limited large-scale profiling of the whole palmitoyl-proteins of EVs. We successfully employed a novel approach that combines low-background acyl-biotinyl exchange (LB-ABE) with label-free proteomics to analyse the palmitoyl-proteome of large EVs (L-EVs) and small EVs (S-EVs) from prostate cancer cells. Here we report the first palmitoyl-protein signature of EVs, and demonstrate that L- and S-EVs harbour proteins associated with distinct biological processes and subcellular origin. We identified STEAP1, STEAP2, and ABCC4 as prostate cancer-specific palmitoyl-proteins abundant in both EV populations. Importantly, localization of the above proteins in EVs was reduced upon inhibition of palmitoylation in the producing cells. Our results suggest that this post-translational modification may play a role in the sorting of the EV-bound secretome and possibly enable selective detection of disease biomarkers. (hide)
EV-METRIC
56% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DIAPH3 Knock down
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: CD9/ HSPA5
non-EV:
Proteomics
no
EV density (g/ml)
1.1
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
DU145
EV-harvesting Medium
Serum free medium
Cell viability (%)
99
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
30%
Total gradient volume, incl. sample (mL)
16.2
Sample volume (mL)
0.2
Orientation
Bottom-up
Rotor type
SW 28
Speed (g)
100000
Duration (min)
230
Fraction volume (mL)
2.5
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
60
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Other;Pierce 660 nm
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9
Not detected EV-associated proteins
HSPA5
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Modus
Reported size (nm)
116
EV concentration
Yes
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV190069
species
Homo sapiens
sample type
Cell culture
cell type
PC3
PC3
DU145
DU145
condition
Control condition
Control condition
DIAPH3 Knock down
DIAPH3 Knock down
separation protocol
DG
(d)(U)C
DG
(d)(U)C
DG
(d)(U)C
DG
(d)(U)C
Exp. nr.
1
2
3
4
EV-METRIC %
67
67
56
56