Search > Results

You searched for: EV170065 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV170065 1/1 Homo sapiens Primary tumor-derived fibroblasts (d)(U)C Bhome R 2017 77%

Study summary

Full title
All authors
Bhome R, Goh RW1, Bullock MD, Pillar N, Thirdborough SM, Mellone M, Mirnezami R, Galea D, Veselkov K, Gu Q, Underwood TJ, Primrose JN, De Wever O, Shomron N, Sayan AE, Mirnezami AH.
Journal
Aging (Albany NY)
Abstract
Colorectal cancer is a global disease with increasing incidence. Mortality is largely attributed to (show more...)Colorectal cancer is a global disease with increasing incidence. Mortality is largely attributed to metastatic spread and therefore, a mechanistic dissection of the signals which influence tumor progression is needed. Cancer stroma plays a critical role in tumor proliferation, invasion and chemoresistance. Here, we sought to identify and characterize exosomal microRNAs as mediators of stromal-tumor signaling. In vitro, we demonstrated that fibroblast exosomes are transferred to colorectal cancer cells, with a resultant increase in cellular microRNA levels, impacting proliferation and chemoresistance. To probe this further, exosomal microRNAs were profiled from paired patient-derived normal and cancer-associated fibroblasts, from an ongoing prospective biomarker study. An exosomal cancer-associated fibroblast signature consisting of microRNAs 329, 181a, 199b, 382, 215 and 21 was identified. Of these, miR-21 had highest abundance and was enriched in exosomes. Orthotopic xenografts established with miR-21-overexpressing fibroblasts and CRC cells led to increased liver metastases compared to those established with control fibroblasts. Our data provide a novel stromal exosome signature in colorectal cancer, which has potential for biomarker validation. Furthermore, we confirmed the importance of stromal miR-21 in colorectal cancer progression using an orthotopic model, and propose that exosomes are a vehicle for miR-21 transfer between stromal fibroblasts and cancer cells. (hide)
EV-METRIC
77% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Colorectal cancer
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
88.25 (pelleting) / 88.25 (washing)
Protein markers
EV: Alix/ CD81/ TSG101/ CD63
non-EV: cytochrome c/ GM130/ cytochromec
Proteomics
no
Show all info
Study aim
Function, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary tumor-derived fibroblasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 50.3 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
88.25
Wash: time (min)
70
Wash: Rotor Type
Type 50.3 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
88.25
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
100
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix, CD63, CD81, TSG101
Not detected contaminants
GM130, cytochrome c
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
Electron microscopy
Extra particle analysis
NTA
Report type
Modus
Reported size (nm)
113
EV concentration
Yes
Particle yield
1570000000000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV170065
species
Homo sapiens
sample type
Cell culture
cell type
Primary
tumor-derived fibroblasts
condition
Colorectal cancer
separation protocol
(d)(U)C
Exp. nr.
1
EV-METRIC %
77