Search > Results

You searched for: EV120011 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV120011 1/1 Homo sapiens NAY (d)(U)C Andersson-Willman B 2012 57%

Study summary

Full title
All authors
Andersson-Willman B, Gehrmann U, Cansu Z, Buerki-Thurnherr T, Krug HF, Gabrielsson S, Scheynius A
Journal
Toxicol Appl Pharmacol
Abstract
Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, (show more...)Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO(2) and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO(2) or ZnO nanoparticles at concentrations from 1 to 100?g/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cells (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO(2) nanoparticles. Non-toxic exposure, 10?g/mL, to TiO(2) and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO(2) nanoparticles induced a down regulation of Fc?RIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on Fc?R-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO(2) or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO(2) and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. (hide)
EV-METRIC
57% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
209.7 (pelleting) / 53.3 (washing)
Protein markers
EV: CD81/ CD63/ MHC2/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Other/Effect of metal oxide nanoparticles on released exosomes
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
130
Pelleting: rotor type
45Ti
Pelleting: adjusted k-factor
209.7
Wash: Rotor Type
NVT90
Wash: adjusted k-factor
53.3
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
MHC2/ MHC1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC2/ MHC1
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120011
species
Homo sapiens
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Exp. nr.
1
EV-METRIC %
57