Search > Results

You searched for: EV110015 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110015 1/1 Mus musculus NAY (d)(U)C Chen X 2011 22%

Study summary

Full title
All authors
Chen X, Song CH, Feng BS, Li TL, Li P, Zheng PY, Chen XM, Xing Z, Yang PC
Journal
J Leukoc Biol
Abstract
Toleroge nic DCs and Tregs are believed to play a critical role in oral tolerance. However, the mech (show more...)Toleroge nic DCs and Tregs are believed to play a critical role in oral tolerance. However, the mechanisms of the generation of tolerogenic DCs and activation of Tregs in the gut remain poorly understood. This study aims to dissect the molecular mechanisms by which IECs and protein antigen induce functional tolerogenic DCs and Tregs. Expression of ?v?6 by gut epithelial cell-derived exosomes, its coupling with food antigen, and their relationship with the development of functional tolerogenic DCs and Tregs were examined by using in vitro and in vivo approaches. The results show that IECs up-regulated the integrin ?v?6 upon uptake of antigens. The epithelial cell-derived exosomes entrapped and transported ?v?6 and antigens to the extracellular environment. The uptake of antigens alone induced DCs to produce LTGF?, whereas exosomes carrying ?v?6/antigen resulted in the production of abundant, active TGF-? in DCs that conferred to DCs the tolerogenic properties. Furthermore, ?v?6/OVA-carrying, exosome-primed DCs were found to promote the production of active TGF-? in Tregs. Thus, in vivo administration of ?v?6/OVA-laden exosomes induced the generation of Tregs and suppressed skewed Th2 responses toward food antigen in the intestine. Our study provides important molecular insights into the molecular mechanisms of Treg development by demonstrating an important role of IEC-derived exosomes carrying ?v?6 and food antigen in the induction of tolerogenic DCs and antigen-specific Tregs. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Integrin-alpha5beta6/ OVA
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Integrin-alpha5beta6/ OVA
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Integrin-alpha5beta6/ OVA
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
Integrin-alpha5beta6; OVA
Image type
Close-up, Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110015
species
Mus musculus
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Exp. nr.
1
EV-METRIC %
22