Search > Results

You searched for: 2018 (Year of publication)

Showing 1 - 7 of 7

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Vesicle type
Experiment number
  • Experiments differ in Vesicle type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV170020 1/2 Trypanosoma cruzi Cell culture supernatant DG
dUC
Filtration
Caeiro, Lucas 2018 77%

Study summary

Full title
All authors
Caeiro LD, Alba-Soto CD, Rizzi M, Solana ME, Rodriguez G, Chidichimo AM, Rodriguez ME, Sánchez DO, Levy GV, Tekiel V.
Journal
PLoS Negl Trop Dis
Abstract
TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage (show more...)TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes. (hide)
EV-METRIC
77% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: HSP70/ TcTASV-C
non-EV: TcSR-62
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Trypanosoma cruzi
Sample Type
Cell culture supernatant
EV-producing cells
Trypomastigote CL-Brener, Trypomastigote Sylvio, Trypomastigote Y, Trypomastigote RA
EV-harvesting Medium
Serum free medium
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
2
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
0.1
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP70,TcTASV-C
Not detected contaminants
TcSR-62
Proteomics database
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-150
EV170020 2/2 Trypanosoma cruzi Cell culture supernatant DG
dUC
Filtration
Caeiro, Lucas 2018 77%

Study summary

Full title
All authors
Caeiro LD, Alba-Soto CD, Rizzi M, Solana ME, Rodriguez G, Chidichimo AM, Rodriguez ME, Sánchez DO, Levy GV, Tekiel V.
Journal
PLoS Negl Trop Dis
Abstract
TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage (show more...)TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes. (hide)
EV-METRIC
77% (98th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: HSP70/ TcTASV-C
non-EV: TcSR-62
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Trypanosoma cruzi
Sample Type
Cell culture supernatant
EV-producing cells
Trypomastigote CL-Brener, Trypomastigote Sylvio, Trypomastigote Y, Trypomastigote RA
EV-harvesting Medium
Serum free medium
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
1080
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
1080
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
2
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
0.15
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP70,TcTASV-C
Not detected contaminants
TcSR-62
Proteomics database
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-150
EV170037 1/3 Homo sapiens Serum dUC Klump, Jennifer 2018 28%

Study summary

Full title
All authors
Klump J, Phillipp U, Follo M, Eremin A, Lehmann H, Nestel S, von Bubnoff N, Nazarenko I
Journal
Nanomedicine
Abstract
Clinical evidence in oncology argues for the advantages of performing molecular analysis of blood bi (show more...)Clinical evidence in oncology argues for the advantages of performing molecular analysis of blood biomarkers to provide information about systemic changes and tumor heterogeneity. Whereas the diagnostic value of cell-free circulating DNA (fcDNA) has successfully been demonstrated in several studies, DNA enclosed in extracellular vesicles (EV) has only recently been described, and its potential diagnostic value is unclear. We established a protocol for separation of EV and fc fractions and tested for presence of mutant BRAFV600E mediating resistance to Vemurafenib and cKITD816V mediating resistance to Imatinib in blood of patients with melanoma and mastocytosis. Our results show that EV contain significantly higher amounts of total DNA as compared to the fc fraction. However, about ten-fold higher copy numbers of the wild type and mutant BRAF and cKIT were detected in the fcDNA fraction supporting its diagnostic value and pointing to differences in fc and EV DNA content. (hide)
EV-METRIC
28% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
213.2 (pelleting) / 213.2 (washing)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
120000
Wash: adjusted k-factor
213.2
Protein Concentration Method
microBCA
Protein Concentration
10-50 dependent whether healthy donors or cancer patients were analyzed
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
different populations of vesicles were detected by DLS and NTA;120-500 nm; and over 1000 nm
NTA
Report type
Size range/distribution
Reported size (nm)
90-300
EV concentration
Yes
Particle yield
3.00E+09 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
90-120
Extra information
Publication aimed to determine the content of mutated DNA oncogenes copy inside of the vesicles (post- DNase treatments) and in the free-circulating fractions. For that DNA was isolated from different EV and fc fractions and DNA was analyzed using ddPCR. Conclusion was that the mutated BRAF and c-KIT copies are preferably located in the free-circulating fractions and not in EVs.
EV170037 2/3 Homo sapiens Serum dUC Klump, Jennifer 2018 28%

Study summary

Full title
All authors
Klump J, Phillipp U, Follo M, Eremin A, Lehmann H, Nestel S, von Bubnoff N, Nazarenko I
Journal
Nanomedicine
Abstract
Clinical evidence in oncology argues for the advantages of performing molecular analysis of blood bi (show more...)Clinical evidence in oncology argues for the advantages of performing molecular analysis of blood biomarkers to provide information about systemic changes and tumor heterogeneity. Whereas the diagnostic value of cell-free circulating DNA (fcDNA) has successfully been demonstrated in several studies, DNA enclosed in extracellular vesicles (EV) has only recently been described, and its potential diagnostic value is unclear. We established a protocol for separation of EV and fc fractions and tested for presence of mutant BRAFV600E mediating resistance to Vemurafenib and cKITD816V mediating resistance to Imatinib in blood of patients with melanoma and mastocytosis. Our results show that EV contain significantly higher amounts of total DNA as compared to the fc fraction. However, about ten-fold higher copy numbers of the wild type and mutant BRAF and cKIT were detected in the fcDNA fraction supporting its diagnostic value and pointing to differences in fc and EV DNA content. (hide)
EV-METRIC
28% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
213.2 (pelleting) / 213.2 (washing)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
120000
Wash: adjusted k-factor
213.2
Protein Concentration Method
microBCA
Protein Concentration
10-50 dependent whether healthy donors or cancer patients were analyzed
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
different populations of vesicles were detected by DLS and NTA;120-500 nm; and over 1000 nm
NTA
Report type
Size range/distribution
Reported size (nm)
90-300
EV concentration
Yes
Particle yield
3.00E+09 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
90-120
Extra information
Publication aimed to determine the content of mutated DNA oncogenes copy inside of the vesicles (post- DNase treatments) and in the free-circulating fractions. For that DNA was isolated from different EV and fc fractions and DNA was analyzed using ddPCR. Conclusion was that the mutated BRAF and c-KIT copies are preferably located in the free-circulating fractions and not in EVs.
EV170037 3/3 Homo sapiens Serum dUC Klump, Jennifer 2018 28%

Study summary

Full title
All authors
Klump J, Phillipp U, Follo M, Eremin A, Lehmann H, Nestel S, von Bubnoff N, Nazarenko I
Journal
Nanomedicine
Abstract
Clinical evidence in oncology argues for the advantages of performing molecular analysis of blood bi (show more...)Clinical evidence in oncology argues for the advantages of performing molecular analysis of blood biomarkers to provide information about systemic changes and tumor heterogeneity. Whereas the diagnostic value of cell-free circulating DNA (fcDNA) has successfully been demonstrated in several studies, DNA enclosed in extracellular vesicles (EV) has only recently been described, and its potential diagnostic value is unclear. We established a protocol for separation of EV and fc fractions and tested for presence of mutant BRAFV600E mediating resistance to Vemurafenib and cKITD816V mediating resistance to Imatinib in blood of patients with melanoma and mastocytosis. Our results show that EV contain significantly higher amounts of total DNA as compared to the fc fraction. However, about ten-fold higher copy numbers of the wild type and mutant BRAF and cKIT were detected in the fcDNA fraction supporting its diagnostic value and pointing to differences in fc and EV DNA content. (hide)
EV-METRIC
28% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
213.2 (pelleting) / 213.2 (washing)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
120000
Wash: adjusted k-factor
213.2
Protein Concentration Method
microBCA
Protein Concentration
10-50 dependent whether healthy donors or cancer patients were analyzed
Characterization: Particle analysis
DLS
Report type
Size range/distribution
Reported size (nm)
different populations of vesicles were detected by DLS and NTA;120-500 nm; and over 1000 nm
NTA
Report type
Size range/distribution
Reported size (nm)
90-300
EV concentration
Yes
Particle yield
3.00E+09 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
90-120
Extra information
Publication aimed to determine the content of mutated DNA oncogenes copy inside of the vesicles (post- DNase treatments) and in the free-circulating fractions. For that DNA was isolated from different EV and fc fractions and DNA was analyzed using ddPCR. Conclusion was that the mutated BRAF and c-KIT copies are preferably located in the free-circulating fractions and not in EVs.
EV170015 1/2 Homo sapiens Cell culture supernatant dUC
Filtration
Polymer-based precipitation
Tabak, Saray 2018 0%

Study summary

Full title
All authors
Tabak S, Schreiber-Avissar S, Beit-Yannai E.
Journal
J Cell Mol Med
Abstract
The role of extracellular vesicles (EVs) as signal mediators has been described in many biological f (show more...)The role of extracellular vesicles (EVs) as signal mediators has been described in many biological fields. How many EVs are needed to deliver the desired physiological signal is yet unclear. Using a normal trabecular meshwork (NTM) cell culture exposed to non-pigmented ciliary epithelium (NPCE)-derived EVs, a relevant model for studying the human ocular drainage system, we addressed the EVs dose-response effects on the Wnt signaling. The objective of the study was to investigate the dosing effects of NPCE-derived EVs on TM Wnt signaling. EVs were isolated by PEG 8000 method from NPCE and RPE cells (used as controls) conditioned media. Concentrations were determined by Tunable Resistive Pulse Sensing method. Various exosomes concentration were incubated with TM cells, for the determination of mRNA (β-Catenin, Axin2 and LEF1) and protein (β-Catenin, GSK-3β) expression using real-time quantitative PCR and Western blot, respectively. Exposure of NTM cells for 8 hrs to low EVs concentrations was associated with a significant decreased expression of β-Catenin, GSK-3β, as opposed to exposure to high exosomal concentrations. Pro-MMP9 and MMP9 activities were significantly enhanced in NTM cells treated with high EV concentrations of (X10) as compared to low EV concentrations of either NPCE- or RPE-derived EVs and to untreated control. Our data support the concept that EVs biological effects are concentration-dependent at their target site. Specifically in the present study, we described a general dose-response at the gene and MMPs activity and a different dose-response regarding key canonical Wnt proteins expression. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + Polymer-based precipitation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
NPCE cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other isolation method
50% PEG-8000, 0.5M NaCl, mixed with the conditioned medium 1:5 v/v respectively and incubated overnight at 4°C. The mixtures were centrifuged at 1500g for 30 minutes to pellet the EVs.
Protein Concentration Method
Bradford
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
98±10
EV concentration
Yes
Extra information
The precipated pellet containing the EVs was re-suspended in PBS and pelleted by ultra-centrifugation of 100,000g for 70 minutes at 4°C. The final EVs pelleted were suspended in 1mL PBS and were stored at -80˚C till use.
EV170015 2/2 Homo sapiens Cell culture supernatant dUC
Filtration
Polymer-based precipitation
Tabak, Saray 2018 0%

Study summary

Full title
All authors
Tabak S, Schreiber-Avissar S, Beit-Yannai E.
Journal
J Cell Mol Med
Abstract
The role of extracellular vesicles (EVs) as signal mediators has been described in many biological f (show more...)The role of extracellular vesicles (EVs) as signal mediators has been described in many biological fields. How many EVs are needed to deliver the desired physiological signal is yet unclear. Using a normal trabecular meshwork (NTM) cell culture exposed to non-pigmented ciliary epithelium (NPCE)-derived EVs, a relevant model for studying the human ocular drainage system, we addressed the EVs dose-response effects on the Wnt signaling. The objective of the study was to investigate the dosing effects of NPCE-derived EVs on TM Wnt signaling. EVs were isolated by PEG 8000 method from NPCE and RPE cells (used as controls) conditioned media. Concentrations were determined by Tunable Resistive Pulse Sensing method. Various exosomes concentration were incubated with TM cells, for the determination of mRNA (β-Catenin, Axin2 and LEF1) and protein (β-Catenin, GSK-3β) expression using real-time quantitative PCR and Western blot, respectively. Exposure of NTM cells for 8 hrs to low EVs concentrations was associated with a significant decreased expression of β-Catenin, GSK-3β, as opposed to exposure to high exosomal concentrations. Pro-MMP9 and MMP9 activities were significantly enhanced in NTM cells treated with high EV concentrations of (X10) as compared to low EV concentrations of either NPCE- or RPE-derived EVs and to untreated control. Our data support the concept that EVs biological effects are concentration-dependent at their target site. Specifically in the present study, we described a general dose-response at the gene and MMPs activity and a different dose-response regarding key canonical Wnt proteins expression. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration + Polymer-based precipitation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
RPE cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Other
Name other isolation method
50% PEG-8000, 0.5M NaCl, mixed with the conditioned medium 1:5 v/v respectively and incubated overnight at 4°C. The mixtures were centrifuged at 1500g for 30 minutes to pellet the EVs.
Protein Concentration Method
Bradford
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
128±11
EV concentration
Yes
Extra information
The precipated pellet containing the EVs was re-suspended in PBS and pelleted by ultra-centrifugation of 100,000g for 70 minutes at 4°C. The final EVs pelleted were suspended in 1mL PBS and were stored at -80˚C till use.
1 - 7 of 7