Search > Results

You searched for: 2018 (Year of publication)

Showing 1 - 50 of 56

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in isolation protocol/particle analysis/sample origin/sample type
Experiment number
  • Experiments differ in Vesicle type
Experiment number
  • Experiments differ in Vesicle type
Experiment number
  • Experiments differ in isolation protocol/particle analysis/sample origin/sample type
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample condition
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample condition
Experiment number
  • Experiments differ in Sample condition
Experiment number
  • Experiments differ in Sample type, Isolation method
Experiment number
  • Experiments differ in Sample type, Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV180041 1/1 Mus musculus Cell culture supernatant DG
dUC
Keklikoglou I 2018 100%

Study summary

Full title
All authors
Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, Lambein L, Poissonnier A, Ferraro GB, Baer C, Cassará A, Guichard A, Iruela-Arispe ML, Lewis CE, Coussens LM, Bardia A, Jain RK, Pollard JW, De Palma M
Journal
Nat Cell Biol
Abstract
Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental s (show more...)Cytotoxic chemotherapy is an effective treatment for invasive breast cancer. However, experimental studies in mice also suggest that chemotherapy has pro-metastatic effects. Primary tumours release extracellular vesicles (EVs), including exosomes, that can facilitate the seeding and growth of metastatic cancer cells in distant organs, but the effects of chemotherapy on tumour-derived EVs remain unclear. Here we show that two classes of cytotoxic drugs broadly employed in pre-operative (neoadjuvant) breast cancer therapy, taxanes and anthracyclines, elicit tumour-derived EVs with enhanced pro-metastatic capacity. Chemotherapy-elicited EVs are enriched in annexin A6 (ANXA6), a Ca2+-dependent protein that promotes NF-κB-dependent endothelial cell activation, Ccl2 induction and Ly6C+CCR2+ monocyte expansion in the pulmonary pre-metastatic niche to facilitate the establishment of lung metastasis. Genetic inactivation of Anxa6 in cancer cells or Ccr2 in host cells blunts the pro-metastatic effects of chemotherapy-elicited EVs. ANXA6 is detected, and potentially enriched, in the circulating EVs of breast cancer patients undergoing neoadjuvant chemotherapy. (hide)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Adj. k-factor
191 (pelleting) / 191 (washing)
Protein markers
EV: CD9/ CD81/ Syntenin-1
non-EV: Gp96/ Gp96
Proteomics
yes
Show all info
Study aim
Function, Biomarker, Biogenesis/cargo sorting, Mechanism of uptake/transfer, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
4T1
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
40
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
134000
Pelleting: adjusted k-factor
191.0
Wash: time (min)
70
Wash: Rotor Type
SW 32 Ti
Wash: speed (g)
134000
Wash: adjusted k-factor
191.0
Density gradient
Only used for validation of main results
Yes
Density medium
Sucrose
Type
Continuous
Lowest density fraction
10
Highest density fraction
50
Sample volume (mL)
0.1
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 40 Ti
Speed (g)
100000
Duration (min)
70
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
70
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
251.4
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
7.3
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD81, Syntenin-1
Not detected contaminants
Gp96
ELISA
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
140
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV180007 1/1 Bos taurus Embryo culture DG
Ultrafiltration
Pavani KC 2018 100%

Study summary

Full title
All authors
Pavani KC, Hendrix A, Van Den Broeck W, Couck L, Szymanska K, Lin X, De Koster J, Van Soom A, Leemans B
Journal
Int J Mol Sci
Abstract
Extracellular vesicles (EVs) play a possible role in cell⁻cell communication and are found in vari (show more...)Extracellular vesicles (EVs) play a possible role in cell⁻cell communication and are found in various body fluids and cell conditioned culture media. The aim of this study was to isolate and characterize EVs in culture medium conditioned by bovine embryos in group and to verify if these EVs are functionally active. Initially, ultracentrifuged bovine serum albumin (BSA) containing medium was selected as suitable EV-free embryo culture medium. Next, EVs were isolated from embryo conditioned culture medium by OptiPrepTM density gradient ultracentrifugation. Isolated EVs were characterized by nanoparticle tracking analysis, western blotting, transmission, and immunoelectron microscopy. Bovine embryo-derived EVs were sizing between 25⁻230 nm with an average concentration of 236.5 ± 1.27 × 10⁸ particles/mL. Moreover, PKH67 EV pre-labeling showed that embryo-secreted EVs were uptaken by zona-intact bovine embryos. Since BSA did not appear to be a contaminating EV source in culture medium, EV functionality was tested in BSA containing medium. Individual embryo culture in BSA medium enriched with EVs derived from conditioned embryo culture medium showed significantly higher blastocyst rates at day 7 and 8 together with a significantly lower apoptotic cell ratio. In conclusion, our study shows that EVs play an important role in inter embryo communication during bovine embryo culture in group. (hide)
EV-METRIC
100% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Embryo culture
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + Ultrafiltration
Protein markers
EV: CD9/ CD63/ TSG101
non-EV: Argonaute-2/ ApoA1
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Bos taurus
Sample Type
Embryo culture
Sample Condition
Control condition
Isolation Method
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Sample volume (mL)
1
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63, TSG101
Not detected contaminants
Argonaute-2, ApoA1
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
133.8±6.8
EV concentration
Yes
EM
EM-type
Transmission-EM/ Immune-EM
Image type
Close-up, Wide-field
EV170030 1/1 Mus musculus Cell culture supernatant DG
dUC
Driedonks, Tom A. P. 2018 100%

Study summary

Full title
All authors
Driedonks TAP, van der Grein SG, Ariyurek Y, Buermans HPJ, Jekel H, Chow FWN, Wauben MHM, Buck AH, 't Hoen PAC, Nolte-'t Hoen ENM
Journal
Cell Mol Life Sci
Abstract
The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of inte (show more...)The release and uptake of nano-sized extracellular vesicles (EV) is a highly conserved means of intercellular communication. The molecular composition of EV, and thereby their signaling function to target cells, is regulated by cellular activation and differentiation stimuli. EV are regarded as snapshots of cells and are, therefore, in the limelight as biomarkers for disease. Although research on EV-associated RNA has predominantly focused on microRNAs, the transcriptome of EV consists of multiple classes of small non-coding RNAs with potential gene-regulatory functions. It is not known whether environmental cues imposed on cells induce specific changes in a broad range of EV-associated RNA classes. Here, we investigated whether immune-activating or -suppressing stimuli imposed on primary dendritic cells affected the release of various small non-coding RNAs via EV. The small RNA transcriptomes of highly pure EV populations free from ribonucleoprotein particles were analyzed by RNA sequencing and RT-qPCR. Immune stimulus-specific changes were found in the miRNA, snoRNA, and Y-RNA content of EV from dendritic cells, whereas tRNA and snRNA levels were much less affected. Only part of the changes in EV-RNA content reflected changes in cellular RNA, which urges caution in interpreting EV as snapshots of cells. By comprehensive analysis of RNA obtained from highly purified EV, we demonstrate that multiple RNA classes contribute to genetic messages conveyed via EV. The identification of multiple RNA classes that display cell stimulation-dependent association with EV is the prelude to unraveling the function and biomarker potential of these EV-RNAs. (hide)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Adj. k-factor
253.9 (pelleting)
Protein markers
EV: CD9/ CD63/ MHC2/ Galectin-3
non-EV: beta-actin
Proteomics
no
Show all info
Study aim
Biomarker, Biogenesis/cargo sorting, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
primary bone marrow dendritic cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability
90
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
65
Pelleting: rotor type
SW 28
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
253.9
Density gradient
Density medium
Sucrose
Type
Continuous
Lowest density fraction
0.4M
Highest density fraction
2.5M
Sample volume (mL)
0.15
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 40 Ti
Speed (g)
192000
Duration (min)
900-1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
1
Pelleting: duration (min)
65
Pelleting: rotor type
SW 40 Ti
Pelleting: speed (g)
192000
Pelleting: adjusted k-factor
144.0
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63, MHC2, Galectin-3
Not detected contaminants
beta-actin
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100 - 200
EV concentration
Yes
Particle analysis: flow cytometry
Flow cytometer type
BD Influx
Hardware adjustment
see van der Vlist et al. 2012 Nature Protocols;and Nolte-'t Hoen 2012 Nanomedicine
Calibration bead size
0.1,0.2
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170013 1/1 Mus musculus Cell culture supernatant DG
dUC
Degosserie, Jonathan 2018 100%

Study summary

Full title
All authors
Degosserie J, Heymans C, Spourquet C, Halbout M, D'Auria L, Van Der Smissen P, Vertommen D, Courtoy PJ, Tyteca D, Pierreux CE.
Journal
J Extracell Vesicles
Abstract
Organogenesis is a complex and dynamic process requiring reciprocal communication between different (show more...)Organogenesis is a complex and dynamic process requiring reciprocal communication between different cell types. In the thyroid, thyrocyte progenitors secrete the angiocrine factor, VEGFA, to recruit endothelial cells. In return, endothelial cells promote thyrocyte organisation into spherical follicular structures, which are responsible for thyroid hormone synthesis and storage. Medium conditioned by endothelial progenitor cells (EPCs) can promote follicle formation and lumen expansion (i.e. folliculogenesis) in an ex vivo culture system of thyroid lobes. Here, we postulated that endothelial cells instruct thyrocyte progenitors by producing extracellular vesicles (EVs). We found that medium conditioned by EPCs contain EVs with exosomal characteristics and that these vesicles can be incorporated into thyrocyte progenitors. By mass spectrometry, laminin peptides were abundantly identified in the EV preparations, probably co-sedimenting with EVs. Laminin-α1 silencing in EPC abrogated the folliculogenic effect of EVs. However, density gradient separation of EVs from laminins revealed that both EV-rich and laminin-rich fractions exhibited folliculogenic activity. In conclusion, we suggest that endothelial cells can produce EVs favouring thyrocyte organisation into follicles and lumen expansion, a mechanism promoted by laminin-α1. (hide)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Adj. k-factor
84.53 (pelleting) / 84.53 (washing)
Protein markers
EV: CD9/ CD63/ Flotillin-1
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
endothelial progenitor cells
EV-harvesting Medium
Serum free medium
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 80 Ti
Pelleting: speed (g)
150000
Pelleting: adjusted k-factor
84.53
Wash: time (min)
90
Wash: Rotor Type
Type 80 Ti
Wash: speed (g)
150000
Wash: adjusted k-factor
84.53
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
10%
Highest density fraction
30%
Sample volume (mL)
1.3
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 55 Ti
Speed (g)
100000
Duration (min)
960
Fraction volume (mL)
0.625
Fraction processing
Centrifugation
Pelleting: volume per fraction
8
Pelleting: duration (min)
90
Pelleting: rotor type
Type 80 Ti
Pelleting: speed (g)
150000
Pelleting: adjusted k-factor
84.53
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63, Flotillin-1
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
100-150
EV concentration
Yes
Particle yield
3.60E+08 particles/million cells
EM
EM-type
Scanning-EM
Image type
Close-up, Wide-field
EV180059 6/6 Gut microbiota Stool Size-exclusion chromatography (non-commercial)
Density gradient
Tulkens J 2018 87%

Study summary

Full title
All authors
Tulkens J, Vergauwen G, Van Deun J, Geeurickx E, Dhondt B, Lippens L, De Scheerder MA, Miinalainen I, Rappu P, De Geest BG, Vandecasteele K, Laukens D, Vandekerckhove L, Denys H, Vandesompele J, De Wever O, Hendrix A.
Journal
Gut
Abstract
(show more...) (hide)
EV-METRIC
87% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Stool
Sample origin
Control condition
Focus vesicles
gut bacteria-derived EV
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Size-exclusion chromatography (non-commercial) + Density gradient
Protein markers
EV: Western blot/ Limulus Amebocyte Lysate Assay/ Proteomics
non-EV: Alix/ flotilin-1/ CD9
Proteomics
yes
EV density (g/ml)
1.141-1.186
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Gut microbiota
Sample Type
Stool
Sample Condition
Control condition
Isolation Method
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10
Highest density fraction
50
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.667
Orientation
Bottom-up
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Size-exclusion chromatography
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
OmpA
Not detected contaminants
Alix/ flotilin-1/ CD9
Proteomics database
No
Detected EV-associated proteins
LPS
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-300
EV concentration
Yes
Particle yield
particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180083 1/2 Mus musculus Cell culture supernatant Density gradient
(Differential) (ultra)centrifugation
Commercial method
Faict S 2018 78%

Study summary

Full title
All authors
Faict S, Muller J, De Veirman K, De Bruyne E, Maes K, Vrancken L, Heusschen R, De Raeve H, Schots R, Vanderkerken K, Caers J, Menu E.
Journal
blood cancer j
Abstract
Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment w (show more...)Progression of multiple myeloma (MM) is largely dependent on the bone marrow (BM) microenvironment wherein communication through different factors including extracellular vesicles takes place. This cross-talk not only leads to drug resistance but also to the development of osteolysis. Targeting vesicle secretion could therefore simultaneously ameliorate drug response and bone disease. In this paper, we examined the effects of MM exosomes on different aspects of osteolysis using the 5TGM1 murine model. We found that 5TGM1 sEVs, or 'exosomes', not only enhanced osteoclast activity, they also blocked osteoblast differentiation and functionality in vitro. Mechanistically, we could demonstrate that transfer of DKK-1 led to a reduction in Runx2, Osterix, and Collagen 1A1 in osteoblasts. In vivo, we uncovered that 5TGM1 exosomes could induce osteolysis in a similar pattern as the MM cells themselves. Blocking exosome secretion using the sphingomyelinase inhibitor GW4869 not only increased cortical bone volume, but also it sensitized the myeloma cells to bortezomib, leading to a strong anti-tumor response when GW4869 and bortezomib were combined. Altogether, our results indicate an important role for exosomes in the BM microenvironment and suggest a novel therapeutic target for anti-myeloma therapy. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + (Differential) (ultra)centrifugation + Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
EV density (g/ml)
1.08
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
5TGM1
EV-harvesting Medium
Serum free medium
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
5
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Bottom-up
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
10800
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
10
Pelleting: duration (min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Commercial kit
ExoQuick
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Syntenin/ CD81
Not detected EV-associated proteins
Detected contaminants
Not detected contaminants
Calreticulin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
114
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
100
EV190002 1/6 Homo sapiens Cell culture supernatant Density gradient
Filtration
(Differential) (ultra)centrifugation
Sachiko Matsumura 2018 78%

Study summary

Full title
All authors
Sachiko Matsumura, Tamiko Minamisawa, Kanako Suga, Hiromi Kishita, Takanori Akagi, Takanori Ichiki, Yuki Ichikawa & Kiyotaka Shiba
Journal
J Extracell Vesicles
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially locate (show more...)Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes – or, more properly, small extracellular vesicles (sEVs) – which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (−28 mV vs. −21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + Filtration + (Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ CD63/ MFGE8/ CD81/ Alix/ HSP70/ beta-actin
non-EV: Histon H2B
Proteomics
no
EV density (g/ml)
1.05-1.1
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MIA PaCa-2
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Density gradient
Density medium
Iodixanol
Type
Continuous
Lowest density fraction
8%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
32
Sample volume (mL)
2
Orientation
Bottom-up
Rotor type
SW 32 Ti
Speed (g)
100000
Duration (min)
1020
Fraction volume (mL)
3.2
Fraction processing
Centrifugation
Pelleting: volume per fraction
33.2
Pelleting: duration (min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
< 1.06 g/ml
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD63/ MFGE8/ beta-actin/ HSP70/ CD81
Not detected EV-associated proteins
TSG101/ Alix
Not detected contaminants
Histon H2B
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
136
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Wide-field
Report size (nm)
height: 39.1, diameter: 135.9
EV190002 2/6 Homo sapiens Cell culture supernatant Density gradient
Filtration
(Differential) (ultra)centrifugation
Sachiko Matsumura 2018 78%

Study summary

Full title
All authors
Sachiko Matsumura, Tamiko Minamisawa, Kanako Suga, Hiromi Kishita, Takanori Akagi, Takanori Ichiki, Yuki Ichikawa & Kiyotaka Shiba
Journal
J Extracell Vesicles
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially locate (show more...)Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes – or, more properly, small extracellular vesicles (sEVs) – which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (−28 mV vs. −21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + Filtration + (Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ CD63/ MFGE8/ CD81/ Alix/ HSP70/ beta-actin
non-EV: Histon H2B
Proteomics
no
EV density (g/ml)
1.05-1.1
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MIA PaCa-2
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Density gradient
Density medium
Iodixanol
Type
Continuous
Lowest density fraction
8%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
32
Sample volume (mL)
2
Orientation
Bottom-up
Rotor type
SW 32 Ti
Speed (g)
100000
Duration (min)
1020
Fraction volume (mL)
3.2
Fraction processing
Centrifugation
Pelleting: volume per fraction
33.2
Pelleting: duration (min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
ca. 1.1 g/ml
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Alix/ CD63/ MFGE8/ beta-actin/ TSG101/ HSP70/ CD81
Not detected contaminants
Histon H2B
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
124
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Wide-field
Report size (nm)
height: 30.1, diameter: 96.4
EV190002 3/6 Homo sapiens Cell culture supernatant Density gradient
Filtration
(Differential) (ultra)centrifugation
Sachiko Matsumura 2018 78%

Study summary

Full title
All authors
Sachiko Matsumura, Tamiko Minamisawa, Kanako Suga, Hiromi Kishita, Takanori Akagi, Takanori Ichiki, Yuki Ichikawa & Kiyotaka Shiba
Journal
J Extracell Vesicles
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially locate (show more...)Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes – or, more properly, small extracellular vesicles (sEVs) – which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (−28 mV vs. −21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + Filtration + (Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ Src/ CD63/ MFGE8/ CD81/ Alix/ HSP70/ beta-actin/ CD9
non-EV: Argonaute2/ Histon H2B
Proteomics
no
EV density (g/ml)
1.05-1.1
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MIA PaCa-2
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Density gradient
Density medium
Iodixanol
Type
Continuous
Lowest density fraction
8%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
32
Sample volume (mL)
2
Orientation
Bottom-up
Rotor type
SW 32 Ti
Speed (g)
100000
Duration (min)
1020
Fraction volume (mL)
3.2
Fraction processing
Centrifugation
Pelleting: volume per fraction
33.2
Pelleting: duration (min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
< 1.06 g/ml
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
CD9/ CD63/ HSP70/ MFGE8/ Src/ beta-actin/ CD81
Not detected EV-associated proteins
TSG101/ Alix
Not detected contaminants
Histon H2B/ Argonaute2
Detected EV-associated proteins
CD63
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
148
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Wide-field
Report size (nm)
height: 50.5, length: 190.0
EV190002 4/6 Homo sapiens Cell culture supernatant Density gradient
Filtration
(Differential) (ultra)centrifugation
Sachiko Matsumura 2018 78%

Study summary

Full title
All authors
Sachiko Matsumura, Tamiko Minamisawa, Kanako Suga, Hiromi Kishita, Takanori Akagi, Takanori Ichiki, Yuki Ichikawa & Kiyotaka Shiba
Journal
J Extracell Vesicles
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially locate (show more...)Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes – or, more properly, small extracellular vesicles (sEVs) – which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (−28 mV vs. −21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy. (hide)
EV-METRIC
78% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + Filtration + (Differential) (ultra)centrifugation
Protein markers
EV: TSG101/ Src/ CD63/ MFGE8/ CD81/ Alix/ HSP70/ beta-actin/ CD9
non-EV: Argonaute2/ Histon H2B
Proteomics
no
EV density (g/ml)
1.05-1.1
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MIA PaCa-2
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Density gradient
Density medium
Iodixanol
Type
Continuous
Lowest density fraction
8%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
32
Sample volume (mL)
2
Orientation
Bottom-up
Rotor type
SW 32 Ti
Speed (g)
100000
Duration (min)
1020
Fraction volume (mL)
3.2
Fraction processing
Centrifugation
Pelleting: volume per fraction
33.2
Pelleting: duration (min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
ca. 1.1 g/ml
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Detected EV-associated proteins
Alix/ MFGE8/ Src/ beta-actin/ CD9/ CD63/ TSG101/ HSP70/ CD81
Not detected contaminants
Histon H2B/ Argonaute2
Detected EV-associated proteins
CD9/ CD63
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
127
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Wide-field
Report size (nm)
height 32.1, length: 120.0
EV170020 1/2 Trypanosoma cruzi Cell culture supernatant DG
dUC
Filtration
Caeiro, Lucas 2018 77%

Study summary

Full title
All authors
Caeiro LD, Alba-Soto CD, Rizzi M, Solana ME, Rodriguez G, Chidichimo AM, Rodriguez ME, Sánchez DO, Levy GV, Tekiel V.
Journal
PLoS Negl Trop Dis
Abstract
TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage (show more...)TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes. (hide)
EV-METRIC
77% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: HSP70/ TcTASV-C
non-EV: TcSR-62
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Trypanosoma cruzi
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Trypomastigote CL-Brener, Trypomastigote Sylvio, Trypomastigote Y, Trypomastigote RA
EV-harvesting Medium
Serum free medium
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
120
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
2
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
0.1
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP70,TcTASV-C
Not detected contaminants
TcSR-62
Proteomics database
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-150
EV170020 2/2 Trypanosoma cruzi Cell culture supernatant DG
dUC
Filtration
Caeiro, Lucas 2018 77%

Study summary

Full title
All authors
Caeiro LD, Alba-Soto CD, Rizzi M, Solana ME, Rodriguez G, Chidichimo AM, Rodriguez ME, Sánchez DO, Levy GV, Tekiel V.
Journal
PLoS Negl Trop Dis
Abstract
TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage (show more...)TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes. (hide)
EV-METRIC
77% (97th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: HSP70/ TcTASV-C
non-EV: TcSR-62
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Trypanosoma cruzi
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Trypomastigote CL-Brener, Trypomastigote Sylvio, Trypomastigote Y, Trypomastigote RA
EV-harvesting Medium
Serum free medium
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
1080
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
1080
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Density gradient
Only used for validation of main results
Yes
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
2
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
None
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
0.15
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP70,TcTASV-C
Not detected contaminants
TcSR-62
Proteomics database
No
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
50-150
EV180059 1/6 Gram-negative bacteria Cell culture supernatant Size-exclusion chromatography (non-commercial)
Density gradient
Tulkens J 2018 75%

Study summary

Full title
All authors
Tulkens J, Vergauwen G, Van Deun J, Geeurickx E, Dhondt B, Lippens L, De Scheerder MA, Miinalainen I, Rappu P, De Geest BG, Vandecasteele K, Laukens D, Vandekerckhove L, Denys H, Vandesompele J, De Wever O, Hendrix A.
Journal
Gut
Abstract
(show more...) (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Escherichia coli
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Size-exclusion chromatography (non-commercial) + Density gradient
Protein markers
EV: Limulus Amebocyte Lysate assay/ LPS/ OmpA/ Western blot
non-EV:
Proteomics
no
EV density (g/ml)
1.141-1.186
Show all info
Study aim
Function/Biomarker/Identification of content (omics approaches)
Sample
Species
Gram-negative bacteria
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Escherichia coli Nissle 1917
EV-harvesting Medium
Serum free medium
Isolation Method
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
10
Highest density fraction
50
Total gradient volume, incl. sample (mL)
16.5
Sample volume (mL)
0.667
Orientation
Bottom-up
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Size-exclusion chromatography
Total column volume (mL)
10
Sample volume/column (mL)
2
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
OmpA/ LPS
Proteomics database
No
Detected EV-associated proteins
LPS
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
50-300
EV concentration
Yes
EM
EM-type
Immuno-EM
Image type
Close-up, Wide-field
EV180033 1/3 Homo sapiens Lipoaspirate dUC
Tangential flow filtration
Busatto S 2018 75%

Study summary

Full title
All authors
Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J1.
Journal
Cells
Abstract
Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible (show more...)Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells. (hide)
EV-METRIC
75% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Lipoaspirate
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Tangential flow filtration
Protein markers
EV: CD9/ CD63/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Lipoaspirate
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Other
Name other isolation method
Tangential flow filtration
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63, CD81
Not detected contaminants
Calnexin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
170-185
EV concentration
Yes
Particle yield
20000000000
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170039 1/2 Homo sapiens Unconditioned serum-containing medium Commercial method
dUC
Filtration
Ultrafiltration
Sjöqvist S 2018 75%

Study summary

Full title
All authors
Sjöqvist S, Ishikawa T, Shimura D, Kasai Y, Imafuku A, Bou-Ghannam S, Iwata T, Kanai N
Journal
J Extracell Vesicles
Abstract
The oral mucosa exhibits unique regenerative properties, sometimes referred to as foetal-like wound (show more...)The oral mucosa exhibits unique regenerative properties, sometimes referred to as foetal-like wound healing. Researchers from our institute have used sheets of oral mucosa epithelial cells (OMECs) for regenerative medicine applications including cornea replacement and oesophageal epithelial regeneration for stricture prevention. Here, we have isolated exosomes from clinical-grade production of OMEC sheets from healthy human donors (n = 8), aiming to evaluate the clinical potential of the exosomes to stimulate epithelial regeneration and to improve understanding of the mode-of-action of the cells. Exosomes were isolated from conditioned (cExo) and non-conditioned (ncExo) media. Characterization was performed using Western blot for common exosomal-markers: CD9 and flotillin were positive while annexin V, EpCam and contaminating marker GRP94 were negative. Nanoparticle tracking analysis revealed a diameter of ~120 nm and transmission electron microscopy showed a corresponding size and spherical appearance. Human skin fibroblasts exposed to exosomes showed dose-dependent reduction of proliferation and a considerable increase of growth factor gene expression (HGF, VEGFA, FGF2 and CTGF). The results were similar for both groups, but with a trend towards a larger effect from cExo. To study adhesion, fluorescently labelled exosomes were topically applied to pig oesophageal wound-beds ex vivo and subsequently washed. Positive signal could be detected after as little as 1 min of adhesion, but increased adhesion time produced a stronger signal. Next, labelled exosomes were added to full-thickness skin wounds in rats and signal was detected up to 5 days after application. cExo significantly reduced the wound size at days 6 and 17. In conclusion, exosomes from OMEC sheets showed pro-regenerative effects on skin wound healing. This is the first time that the healing capacity of the oral mucosa is studied from an exosome perspective. These findings might lead to a combinational therapy of cell sheets and exosomes for future patients with early oesophageal cancer. (hide)
EV-METRIC
75% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Unconditioned serum-containing medium
Sample origin
Control condition
Focus vesicles
exosome
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial method + dUC + Filtration + Ultrafiltration
Protein markers
EV: CD9/ Flotillin-1
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Unconditioned serum-containing medium
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10, 100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
1.905
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, Flotillin-1
Not detected contaminants
GRP94
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
119.2±4.5
EV concentration
Yes
Particle yield
2.035E09 ± 3.735E08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170039 2/2 Homo sapiens Cell culture supernatant Commercial method
dUC
Filtration
Ultrafiltration
Sjöqvist S 2018 75%

Study summary

Full title
All authors
Sjöqvist S, Ishikawa T, Shimura D, Kasai Y, Imafuku A, Bou-Ghannam S, Iwata T, Kanai N
Journal
J Extracell Vesicles
Abstract
The oral mucosa exhibits unique regenerative properties, sometimes referred to as foetal-like wound (show more...)The oral mucosa exhibits unique regenerative properties, sometimes referred to as foetal-like wound healing. Researchers from our institute have used sheets of oral mucosa epithelial cells (OMECs) for regenerative medicine applications including cornea replacement and oesophageal epithelial regeneration for stricture prevention. Here, we have isolated exosomes from clinical-grade production of OMEC sheets from healthy human donors (n = 8), aiming to evaluate the clinical potential of the exosomes to stimulate epithelial regeneration and to improve understanding of the mode-of-action of the cells. Exosomes were isolated from conditioned (cExo) and non-conditioned (ncExo) media. Characterization was performed using Western blot for common exosomal-markers: CD9 and flotillin were positive while annexin V, EpCam and contaminating marker GRP94 were negative. Nanoparticle tracking analysis revealed a diameter of ~120 nm and transmission electron microscopy showed a corresponding size and spherical appearance. Human skin fibroblasts exposed to exosomes showed dose-dependent reduction of proliferation and a considerable increase of growth factor gene expression (HGF, VEGFA, FGF2 and CTGF). The results were similar for both groups, but with a trend towards a larger effect from cExo. To study adhesion, fluorescently labelled exosomes were topically applied to pig oesophageal wound-beds ex vivo and subsequently washed. Positive signal could be detected after as little as 1 min of adhesion, but increased adhesion time produced a stronger signal. Next, labelled exosomes were added to full-thickness skin wounds in rats and signal was detected up to 5 days after application. cExo significantly reduced the wound size at days 6 and 17. In conclusion, exosomes from OMEC sheets showed pro-regenerative effects on skin wound healing. This is the first time that the healing capacity of the oral mucosa is studied from an exosome perspective. These findings might lead to a combinational therapy of cell sheets and exosomes for future patients with early oesophageal cancer. (hide)
EV-METRIC
75% (96th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial method + dUC + Filtration + Ultrafiltration
Protein markers
EV: CD9/ Flotillin-1
non-EV: GRP94
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
primary mucosal epithelial cells
EV-harvesting Medium
Serum-containing medium
Cell viability
96.3
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10, 100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
0.97
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, Flotillin-1
Not detected contaminants
GRP94
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
124.8±4.1
EV concentration
Yes
Particle yield
1.027E09 ± 9.279E08
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190002 5/6 Homo sapiens Cell culture supernatant Density gradient
Filtration
(Differential) (ultra)centrifugation
Sachiko Matsumura 2018 67%

Study summary

Full title
All authors
Sachiko Matsumura, Tamiko Minamisawa, Kanako Suga, Hiromi Kishita, Takanori Akagi, Takanori Ichiki, Yuki Ichikawa & Kiyotaka Shiba
Journal
J Extracell Vesicles
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially locate (show more...)Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes – or, more properly, small extracellular vesicles (sEVs) – which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (−28 mV vs. −21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy. (hide)
EV-METRIC
67% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Density gradient + Filtration + (Differential) (ultra)centrifugation
Protein markers
EV: CD81/ EpCAM/ CD63/ CD9
non-EV:
Proteomics
no
EV density (g/ml)
1.05-1.1
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
HT-29
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Density gradient
Density medium
Iodixanol
Type
Continuous
Lowest density fraction
8%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
32
Sample volume (mL)
2
Orientation
Bottom-up
Rotor type
SW 32 Ti
Speed (g)
100000
Duration (min)
1020
Fraction volume (mL)
3.2
Fraction processing
Centrifugation
Pelleting: volume per fraction
33.2
Pelleting: duration (min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
< 1.06 g/ml
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
EpCAM/ CD9
Not detected EV-associated proteins
CD81/ CD63
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
162
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Wide-field
EV190002 6/6 Homo sapiens Cell culture supernatant (Differential) (ultra)centrifugation
Filtration
Density gradient
Sachiko Matsumura 2018 67%

Study summary

Full title
All authors
Sachiko Matsumura, Tamiko Minamisawa, Kanako Suga, Hiromi Kishita, Takanori Akagi, Takanori Ichiki, Yuki Ichikawa & Kiyotaka Shiba
Journal
J Extracell Vesicles
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially locate (show more...)Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes – or, more properly, small extracellular vesicles (sEVs) – which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (−28 mV vs. −21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy. (hide)
EV-METRIC
67% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
Other / small extracellular vesicles
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(Differential) (ultra)centrifugation + Filtration + Density gradient
Protein markers
EV: CD81/ EpCAM/ CD63/ CD9
non-EV:
Proteomics
no
EV density (g/ml)
1.05-1.1
Show all info
Study aim
Biomarker/Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
HT-29
EV-harvesting Medium
Serum free medium
Cell viability
Yes
Cell viability (%)
Yes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Density gradient
Density medium
Iodixanol
Type
Continuous
Lowest density fraction
8%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
32
Sample volume (mL)
2
Orientation
Bottom-up
Rotor type
SW 32 Ti
Speed (g)
100000
Duration (min)
1020
Fraction volume (mL)
3.2
Fraction processing
Centrifugation
Pelleting: volume per fraction
33.2
Pelleting: duration (min)
120
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
160000
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
Density
Used subtypes
ca. 1.1 g/ml
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ EpCAM/ CD81
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
142
EV concentration
Yes
EM
EM-type
Atomic force-EM
Image type
Wide-field
EV180030 3/7 Homo sapiens Cell culture supernatant DG
dUC
Zhaohao Liao 2018 67%

Study summary

Full title
All authors
Zhaohao Liao, Lorena Martin Jaular ORCID Icon, Estelle Soueidi, Mabel Jouve, Dillon C. Muth, Tine H. Schøyen, Tessa Seale, Norman J. Haughey, Matias Ostrowski, Clotilde Théry ORCID Icon & Kenneth W. Witwer
Journal
J Extracell Vesicles
Abstract
Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was deve (show more...)Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was developed as a marker of reticulocyte EVs in the 1970s. Easily, quickly, and cheaply assayed, AChE activity has more recently been proposed as a generic marker for small extracellular vesicles (sEV) or exosomes, and as a negative marker of HIV-1 virions. To evaluate these proposed uses of AChE activity, we examined data from different EV and virus isolation methods using T-lymphocytic (H9, PM1 and Jurkat) and promonocytic (U937) cell lines grown in culture conditions that differed by serum content. When EVs were isolated by differential ultracentrifugation, no correlation between AChE activity and particle count was observed. AChE activity was detected in non-conditioned medium when serum was added, and most of this activity resided in soluble fractions and could not be pelleted by centrifugation. The serum-derived pelletable AChE protein was not completely eliminated from culture medium by overnight ultracentrifugation; however, a serum “extra-depletion” protocol, in which a portion of the supernatant was left undisturbed during harvesting, achieved near-complete depletion. In conditioned medium also, only small percentages of AChE activity could be pelleted together with particles. Furthermore, no consistent enrichment of AChE activity in sEV fractions was observed. Little if any AChE activity is produced by the cells we examined, and this activity was mainly present in non-vesicular structures, as shown by electron microscopy. Size-exclusion chromatography and iodixanol gradient separation showed that AChE activity overlaps only minimally with EV-enriched fractions. AChE activity likely betrays exposure to blood products and not EV abundance, echoing the MISEV 2014 and 2018 guidelines and other publications. Additional experiments may be merited to validate these results for other cell types and biological fluids other than blood. (hide)
EV-METRIC
67% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
HIV-BaL infected
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Protein markers
EV: CD81/ CD63/ CD9
non-EV: AChE
Proteomics
no
EV density (g/ml)
Not specified
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
HIV-BaL infected
EV-producing cells
PM1
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
50
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
11
Lowest density fraction
6%
Highest density fraction
18%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1
Orientation
Top-down
Rotor type
TH-641
Speed (g)
210000
Duration (min)
120
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
35
Pelleting: duration (min)
40
Pelleting: rotor type
AH-629 (36 ml)
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD9/ CD63/ CD81
Other 1
Acetylcholinesterase assay
Detected EV-associated proteins
Not detected contaminants
AChE
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV180022 1/4 Homo sapiens Cell culture supernatant dUC Kaur S 2018 67%

Study summary

Full title
All authors
Kaur S, Abu-Shahba AG, Paananen RO, Hongisto H, Hiidenmaa H, Skottman H, Seppänen-Kaijansinkko R, Mannerström B
Journal
J Cell Sci
Abstract
Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and (show more...)Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and differentiation. Due to their bioactive cargoes influencing cell fate and function, interest in EVs in regenerative medicine has rapidly increased. EV-derived small non-coding RNA mimic the functions of the parent stem cells, regulating the maintenance and differentiation of stem cells, controlling the intercellular regulation of gene expression, and eventually affecting the cell fate. In this study, we used RNA sequencing to provide a comprehensive overview of the expression profiles of small non-coding transcripts carried by the EVs derived from human adipose tissue stromal/stem cells (AT-MSCs) and human pluripotent stem cells (hPSCs), both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC). Both hPSCs and AT-MSCs were characterized and their EVs were extracted using standard protocols. Small non-coding RNA sequencing from EVs showed that hPSCs and AT-MSCs showed distinct profiles, unique for each stem cell source. Interestingly, in hPSCs, most abundant miRNAs were from specific miRNA families regulating pluripotency, reprogramming and differentiation (miR-17-92, mir-200, miR-302/367, miR-371/373, CM19 microRNA cluster). For the AT-MSCs, the highly expressed miRNAs were found to be regulating osteogenesis (let-7/98, miR-10/100, miR-125, miR-196, miR-199, miR-615-3p, mir-22-3p, mir-24-3p, mir-27a-3p, mir-193b-5p, mir-195-3p). Additionally, abundant small nuclear and nucleolar RNA were detected in hPSCs, whereas Y- and tRNA were found in AT-MSCs. Identification of EV-miRNA and non-coding RNA signatures released by these stem cells will provide clues towards understanding their role in intracellular communication, and well as their roles in maintaining the stem cell niche. (hide)
EV-METRIC
67% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
208.3 (pelleting) / 208.3 (washing)
Protein markers
EV: CD63/ HSP70/ TSG101/ CD90
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
pluripotent stem cells
EV-harvesting Medium
Serum free medium
Cell viability
80
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
121896
Pelleting: adjusted k-factor
208.3
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
121896
Wash: adjusted k-factor
208.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, HSP70, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
101-500
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180022 4/4 Homo sapiens Cell culture supernatant Commercial method Kaur S 2018 67%

Study summary

Full title
All authors
Kaur S, Abu-Shahba AG, Paananen RO, Hongisto H, Hiidenmaa H, Skottman H, Seppänen-Kaijansinkko R, Mannerström B
Journal
J Cell Sci
Abstract
Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and (show more...)Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and differentiation. Due to their bioactive cargoes influencing cell fate and function, interest in EVs in regenerative medicine has rapidly increased. EV-derived small non-coding RNA mimic the functions of the parent stem cells, regulating the maintenance and differentiation of stem cells, controlling the intercellular regulation of gene expression, and eventually affecting the cell fate. In this study, we used RNA sequencing to provide a comprehensive overview of the expression profiles of small non-coding transcripts carried by the EVs derived from human adipose tissue stromal/stem cells (AT-MSCs) and human pluripotent stem cells (hPSCs), both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC). Both hPSCs and AT-MSCs were characterized and their EVs were extracted using standard protocols. Small non-coding RNA sequencing from EVs showed that hPSCs and AT-MSCs showed distinct profiles, unique for each stem cell source. Interestingly, in hPSCs, most abundant miRNAs were from specific miRNA families regulating pluripotency, reprogramming and differentiation (miR-17-92, mir-200, miR-302/367, miR-371/373, CM19 microRNA cluster). For the AT-MSCs, the highly expressed miRNAs were found to be regulating osteogenesis (let-7/98, miR-10/100, miR-125, miR-196, miR-199, miR-615-3p, mir-22-3p, mir-24-3p, mir-27a-3p, mir-193b-5p, mir-195-3p). Additionally, abundant small nuclear and nucleolar RNA were detected in hPSCs, whereas Y- and tRNA were found in AT-MSCs. Identification of EV-miRNA and non-coding RNA signatures released by these stem cells will provide clues towards understanding their role in intracellular communication, and well as their roles in maintaining the stem cell niche. (hide)
EV-METRIC
67% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial method
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
pluripotent stem cells
EV-harvesting Medium
Serum free medium
Cell viability
80
Isolation Method
Commercial kit
miRCURY Exosome Isolation Kit (Exiqon A/S, Vedbaek, Denmark)
Protein Concentration Method
Not determined
EV180051 2/2 Rattus norvegicus Blood plasma dUC Takov K 2018 66%

Study summary

Full title
All authors
Takov K, Yellon DM, Davidson SM
Journal
J Extracell Vesicles
Abstract
Interest in small extracellular vesicles (sEVs) as functional carriers of proteins and nucleic acids (show more...)Interest in small extracellular vesicles (sEVs) as functional carriers of proteins and nucleic acids is growing continuously. There are large numbers of sEVs in the blood, but lack of standardised methods for sEV isolation greatly limits our ability to study them. In this report, we use rat plasma to systematically compare two commonly used techniques for isolation of sEVs: ultracentrifugation (UC-sEVs) and size-exclusion chromatography (SEC-sEVs). SEC-sEVs had higher particle number, protein content, particle/protein ratios and sEV marker signal than UC-sEVs. However, SEC-sEVs also contained greater amounts of APOB+ lipoproteins and large quantities of non-sEV protein. sEV marker signal correlated very well with both particle number and protein content in UC-sEVs but not in all of the SEC-sEV fractions. Functionally, both UC-sEVs and SEC-sEVs isolates contained a variety of proangiogenic factors (with endothelin-1 being the most abundant) and stimulated migration of endothelial cells. However, there was no evident correlation between the promigratory potential and the quantity of sEVs added, indicating that non-vesicular co-isolates may contribute to the promigratory effects. Overall, our findings suggest that UC provides plasma sEVs of lower yields, but markedly higher purity compared to SEC. Furthermore, we show that the functional activity of sEVs can depend on the isolation method used and does not solely reflect the sEV quantity. These findings are of importance when working with sEVs isolated from plasma- or serum-containing conditioned medium. (hide)
EV-METRIC
66% (95th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
small extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
115.3 (pelleting) / 115.3 (washing)
Protein markers
EV: HSP70/ CD9/ CD81/ Endothelin-1
non-EV: ApoB/ ApoB
Proteomics
no
Show all info
Study aim
Function, Technical analysis comparing/optimizing EV-related methods, Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Blood plasma
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
MLA-55
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
115.3
Wash: time (min)
70
Wash: Rotor Type
MLA-55
Wash: speed (g)
100000
Wash: adjusted k-factor
115.3
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
13.6-14.6
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP70
ELISA
Antibody details provided?
Yes
Other 1
Protein array (ARY007, R&D Systems)
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
96.6
EV concentration
Yes
Particle yield
20000000000
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180022 3/4 Homo sapiens Cell culture supernatant dUC
Filtration
Kaur S 2018 66%

Study summary

Full title
All authors
Kaur S, Abu-Shahba AG, Paananen RO, Hongisto H, Hiidenmaa H, Skottman H, Seppänen-Kaijansinkko R, Mannerström B
Journal
J Cell Sci
Abstract
Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and (show more...)Extracellular vesicles (EVs) are reported to be involved in stem cell maintenance, self-renewal, and differentiation. Due to their bioactive cargoes influencing cell fate and function, interest in EVs in regenerative medicine has rapidly increased. EV-derived small non-coding RNA mimic the functions of the parent stem cells, regulating the maintenance and differentiation of stem cells, controlling the intercellular regulation of gene expression, and eventually affecting the cell fate. In this study, we used RNA sequencing to provide a comprehensive overview of the expression profiles of small non-coding transcripts carried by the EVs derived from human adipose tissue stromal/stem cells (AT-MSCs) and human pluripotent stem cells (hPSCs), both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSC). Both hPSCs and AT-MSCs were characterized and their EVs were extracted using standard protocols. Small non-coding RNA sequencing from EVs showed that hPSCs and AT-MSCs showed distinct profiles, unique for each stem cell source. Interestingly, in hPSCs, most abundant miRNAs were from specific miRNA families regulating pluripotency, reprogramming and differentiation (miR-17-92, mir-200, miR-302/367, miR-371/373, CM19 microRNA cluster). For the AT-MSCs, the highly expressed miRNAs were found to be regulating osteogenesis (let-7/98, miR-10/100, miR-125, miR-196, miR-199, miR-615-3p, mir-22-3p, mir-24-3p, mir-27a-3p, mir-193b-5p, mir-195-3p). Additionally, abundant small nuclear and nucleolar RNA were detected in hPSCs, whereas Y- and tRNA were found in AT-MSCs. Identification of EV-miRNA and non-coding RNA signatures released by these stem cells will provide clues towards understanding their role in intracellular communication, and well as their roles in maintaining the stem cell niche. (hide)
EV-METRIC
66% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
208.3 (pelleting) / 208.3 (washing)
Protein markers
EV: CD63/ TSG101/ CD90
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
adipose tissue-derived mesenchymal stem cells
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Cell viability
80
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
SW 28
Pelleting: speed (g)
121896
Pelleting: adjusted k-factor
208.3
Wash: time (min)
120
Wash: Rotor Type
SW 28
Wash: speed (g)
121896
Wash: adjusted k-factor
208.3
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, TSG101, CD90
Not detected contaminants
Calnexin
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
101-500
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180017 1/5 Homo sapiens Cell culture supernatant DG
dUC
Filtration
Ultrafiltration
Beghein E 2018 63%

Study summary

Full title
All authors
Beghein E, Devriese D, Van Hoey E, Gettemans J
Journal
J Cell Sci
Abstract
Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasi (show more...)Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasive structures as they contribute to many aspects of invasion and metastasis. Unfortunately, the mechanisms underlying EV biogenesis or release are still poorly understood. Recent reports however indicate a role of the actin cytoskeleton in this process. In this study, we have exploited thoroughly characterized camelid nanobodies against actin binding proteins cortactin and fascin-1, a branched actin regulator and actin bundler, respectively, in order to assess their roles in EV biogenesis or release. Using this strategy, we demonstrate a role of the cortactin NTA and SH3 domains in EV release. Fascin-1 also regulates EV release, independently of its actin-bundling activity. We show a contribution of these protein domains in endosomal trafficking, a crucial step in EV biogenesis, and we confirm that EVs are preferentially released at invadopodia, the latter being actin-rich invasive cell protrusions in which cortactin and fascin-1 perform essential roles. Accordingly, EVs are enriched with invadopodial proteins such as the matrix metalloproteinase MT1-MMP and exert gelatinolytic activity. Based on our findings, we report that both cortactin and fascin-1 play key roles in EV release by regulating endosomal trafficking or invadopodia formation and function. (hide)
EV-METRIC
63% (93rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration + Ultrafiltration
Protein markers
EV: CD9/ CD63/ Flotillin-2/ TSG101/ MT1-MMP
non-EV: PMP70/ CytochromeC/ Calnexin/ Golgin245
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MDAMB231
EV-harvesting Medium
Serum free medium
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
0.5
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
11
Pelleting: duration (min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
255.8
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63, Flotillin-2, TSG101, MT1-MMP
Not detected contaminants
PMP70, CytochromeC, Calnexin, Golgin245
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
131
EV concentration
Yes
Particle yield
4.95E+09 particles/million cells
EV180051 1/2 Rattus norvegicus Blood plasma dUC
SEC
Ultrafiltration
Takov K 2018 62%

Study summary

Full title
All authors
Takov K, Yellon DM, Davidson SM
Journal
J Extracell Vesicles
Abstract
Interest in small extracellular vesicles (sEVs) as functional carriers of proteins and nucleic acids (show more...)Interest in small extracellular vesicles (sEVs) as functional carriers of proteins and nucleic acids is growing continuously. There are large numbers of sEVs in the blood, but lack of standardised methods for sEV isolation greatly limits our ability to study them. In this report, we use rat plasma to systematically compare two commonly used techniques for isolation of sEVs: ultracentrifugation (UC-sEVs) and size-exclusion chromatography (SEC-sEVs). SEC-sEVs had higher particle number, protein content, particle/protein ratios and sEV marker signal than UC-sEVs. However, SEC-sEVs also contained greater amounts of APOB+ lipoproteins and large quantities of non-sEV protein. sEV marker signal correlated very well with both particle number and protein content in UC-sEVs but not in all of the SEC-sEV fractions. Functionally, both UC-sEVs and SEC-sEVs isolates contained a variety of proangiogenic factors (with endothelin-1 being the most abundant) and stimulated migration of endothelial cells. However, there was no evident correlation between the promigratory potential and the quantity of sEVs added, indicating that non-vesicular co-isolates may contribute to the promigratory effects. Overall, our findings suggest that UC provides plasma sEVs of lower yields, but markedly higher purity compared to SEC. Furthermore, we show that the functional activity of sEVs can depend on the isolation method used and does not solely reflect the sEV quantity. These findings are of importance when working with sEVs isolated from plasma- or serum-containing conditioned medium. (hide)
EV-METRIC
62% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
small extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + SEC + Ultrafiltration
Protein markers
EV: HSP70/ CD9/ CD81/ Endothelin-1
non-EV: ApoB/ ApoB
Proteomics
no
Show all info
Study aim
Function, Technical analysis comparing/optimizing EV-related methods, Identification of content (omics approaches)
Sample
Species
Rattus norvegicus
Sample Type
Blood plasma
Sample Condition
Control condition
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Polyethersulfone (PES)
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
39-308
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HSP70
ELISA
Antibody details provided?
Yes
Other 1
Protein array (ARY007, R&D Systems)
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
81.5
EV concentration
Yes
Particle yield
2000000000000
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180017 2/5 Homo sapiens Cell culture supernatant DG
dUC
Filtration
Ultrafiltration
Beghein E 2018 62%

Study summary

Full title
All authors
Beghein E, Devriese D, Van Hoey E, Gettemans J
Journal
J Cell Sci
Abstract
Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasi (show more...)Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasive structures as they contribute to many aspects of invasion and metastasis. Unfortunately, the mechanisms underlying EV biogenesis or release are still poorly understood. Recent reports however indicate a role of the actin cytoskeleton in this process. In this study, we have exploited thoroughly characterized camelid nanobodies against actin binding proteins cortactin and fascin-1, a branched actin regulator and actin bundler, respectively, in order to assess their roles in EV biogenesis or release. Using this strategy, we demonstrate a role of the cortactin NTA and SH3 domains in EV release. Fascin-1 also regulates EV release, independently of its actin-bundling activity. We show a contribution of these protein domains in endosomal trafficking, a crucial step in EV biogenesis, and we confirm that EVs are preferentially released at invadopodia, the latter being actin-rich invasive cell protrusions in which cortactin and fascin-1 perform essential roles. Accordingly, EVs are enriched with invadopodial proteins such as the matrix metalloproteinase MT1-MMP and exert gelatinolytic activity. Based on our findings, we report that both cortactin and fascin-1 play key roles in EV release by regulating endosomal trafficking or invadopodia formation and function. (hide)
EV-METRIC
62% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Expressing fascin nanobody
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration + Ultrafiltration
Protein markers
EV: CD9/ CD63
non-EV: None
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Expressing fascin nanobody
EV-producing cells
MDAMB231
EV-harvesting Medium
Serum free medium
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
0.5
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
11
Pelleting: duration (min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
255.8
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
142
EV concentration
Yes
Particle yield
2.25E+10 particles/million cells
EV180017 5/5 Homo sapiens Cell culture supernatant DG
dUC
Filtration
Ultrafiltration
Beghein E 2018 62%

Study summary

Full title
All authors
Beghein E, Devriese D, Van Hoey E, Gettemans J
Journal
J Cell Sci
Abstract
Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasi (show more...)Cancer cell-derived extracellular vesicles (EVs) are increasingly being recognized as genuine invasive structures as they contribute to many aspects of invasion and metastasis. Unfortunately, the mechanisms underlying EV biogenesis or release are still poorly understood. Recent reports however indicate a role of the actin cytoskeleton in this process. In this study, we have exploited thoroughly characterized camelid nanobodies against actin binding proteins cortactin and fascin-1, a branched actin regulator and actin bundler, respectively, in order to assess their roles in EV biogenesis or release. Using this strategy, we demonstrate a role of the cortactin NTA and SH3 domains in EV release. Fascin-1 also regulates EV release, independently of its actin-bundling activity. We show a contribution of these protein domains in endosomal trafficking, a crucial step in EV biogenesis, and we confirm that EVs are preferentially released at invadopodia, the latter being actin-rich invasive cell protrusions in which cortactin and fascin-1 perform essential roles. Accordingly, EVs are enriched with invadopodial proteins such as the matrix metalloproteinase MT1-MMP and exert gelatinolytic activity. Based on our findings, we report that both cortactin and fascin-1 play key roles in EV release by regulating endosomal trafficking or invadopodia formation and function. (hide)
EV-METRIC
62% (92nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Expressing cortactin nanobody (NTA domain)
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration + Ultrafiltration
Protein markers
EV: CD9/ CD63
non-EV: None
Proteomics
yes
Show all info
Study aim
Biogenesis/cargo sorting, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Expressing cortactin nanobody (NTA domain)
EV-producing cells
MDAMB231
EV-harvesting Medium
Serum free medium
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
0.5
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 41 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
11
Pelleting: duration (min)
180
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
255.8
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
133
EV concentration
Yes
Particle yield
1.16E+09 particles/million cells
EV170025 1/1 Homo sapiens Urine Commercial method
Ultrafiltration
Oeyen E 2018 62%

Study summary

Full title
All authors
Oeyen E, Van Mol K, Baggerman G, Willems H, Boonen K, Rolfo C, Pauwels P, Jacobs A, Schildermans K, Cho WC, Mertens I.
Journal
J Extracell Vesicles
Abstract
Extracellular vesicles (EVs) have a great potential in clinical applications. However, their isolati (show more...)Extracellular vesicles (EVs) have a great potential in clinical applications. However, their isolation from different bodily fluids and their characterisation are currently not optimal or standardised. Here, we report the results of examining the performance of ultrafiltration combined with size exclusion chromatography (UF-SEC) to isolate EVs from urine. The results reveal that UF-SEC is an efficient method and provides high purity. Furthermore, we introduce asymmetrical-flow field-flow fractionation coupled with a UV detector and multi-angle light-scattering detector (AF4/UV-MALS) as a characterisation method and compare it with current methods. We demonstrate that AF4/UV-MALS is a straightforward and reproducible method for determining size, amount and purity of isolated urinary EVs. (hide)
EV-METRIC
62% (94th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial method + Ultrafiltration
Protein markers
EV: Flotillin-1
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches), Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Sample Condition
Control condition
Isolation Method
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Regenerated cellulose
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
microBCA
Protein Concentration
0.81
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Flotillin-1
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
108
EV concentration
Yes
Particle yield
1.80E+09 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
Report size (nm)
40-100
Other particle analysis name(1)
Asymmetrical flow field-flow fractionation
Report type
Size range/distribution
Report size
40-160
EV-concentration
No
EV180030 5/7 Homo sapiens Cell culture supernatant Commercial method
dUC
Zhaohao Liao 2018 56%

Study summary

Full title
All authors
Zhaohao Liao, Lorena Martin Jaular ORCID Icon, Estelle Soueidi, Mabel Jouve, Dillon C. Muth, Tine H. Schøyen, Tessa Seale, Norman J. Haughey, Matias Ostrowski, Clotilde Théry ORCID Icon & Kenneth W. Witwer
Journal
J Extracell Vesicles
Abstract
Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was deve (show more...)Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was developed as a marker of reticulocyte EVs in the 1970s. Easily, quickly, and cheaply assayed, AChE activity has more recently been proposed as a generic marker for small extracellular vesicles (sEV) or exosomes, and as a negative marker of HIV-1 virions. To evaluate these proposed uses of AChE activity, we examined data from different EV and virus isolation methods using T-lymphocytic (H9, PM1 and Jurkat) and promonocytic (U937) cell lines grown in culture conditions that differed by serum content. When EVs were isolated by differential ultracentrifugation, no correlation between AChE activity and particle count was observed. AChE activity was detected in non-conditioned medium when serum was added, and most of this activity resided in soluble fractions and could not be pelleted by centrifugation. The serum-derived pelletable AChE protein was not completely eliminated from culture medium by overnight ultracentrifugation; however, a serum “extra-depletion” protocol, in which a portion of the supernatant was left undisturbed during harvesting, achieved near-complete depletion. In conditioned medium also, only small percentages of AChE activity could be pelleted together with particles. Furthermore, no consistent enrichment of AChE activity in sEV fractions was observed. Little if any AChE activity is produced by the cells we examined, and this activity was mainly present in non-vesicular structures, as shown by electron microscopy. Size-exclusion chromatography and iodixanol gradient separation showed that AChE activity overlaps only minimally with EV-enriched fractions. AChE activity likely betrays exposure to blood products and not EV abundance, echoing the MISEV 2014 and 2018 guidelines and other publications. Additional experiments may be merited to validate these results for other cell types and biological fluids other than blood. (hide)
EV-METRIC
56% (89th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Commercial method + dUC
Protein markers
EV: CD63
non-EV: AChE
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
Jurkat
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
50
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Commercial kit
qEV
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63
Detected contaminants
AChE
Other 1
Acetylcholinesterase assay
Detected EV-associated proteins
Detected contaminants
AChE
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EM
EM-type
Immuno-EM/ Transmission-EM
Image type
Close-up, Wide-field
EV180030 6/7 Homo sapiens Cell culture supernatant DG
dUC
Zhaohao Liao 2018 56%

Study summary

Full title
All authors
Zhaohao Liao, Lorena Martin Jaular ORCID Icon, Estelle Soueidi, Mabel Jouve, Dillon C. Muth, Tine H. Schøyen, Tessa Seale, Norman J. Haughey, Matias Ostrowski, Clotilde Théry ORCID Icon & Kenneth W. Witwer
Journal
J Extracell Vesicles
Abstract
Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was deve (show more...)Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was developed as a marker of reticulocyte EVs in the 1970s. Easily, quickly, and cheaply assayed, AChE activity has more recently been proposed as a generic marker for small extracellular vesicles (sEV) or exosomes, and as a negative marker of HIV-1 virions. To evaluate these proposed uses of AChE activity, we examined data from different EV and virus isolation methods using T-lymphocytic (H9, PM1 and Jurkat) and promonocytic (U937) cell lines grown in culture conditions that differed by serum content. When EVs were isolated by differential ultracentrifugation, no correlation between AChE activity and particle count was observed. AChE activity was detected in non-conditioned medium when serum was added, and most of this activity resided in soluble fractions and could not be pelleted by centrifugation. The serum-derived pelletable AChE protein was not completely eliminated from culture medium by overnight ultracentrifugation; however, a serum “extra-depletion” protocol, in which a portion of the supernatant was left undisturbed during harvesting, achieved near-complete depletion. In conditioned medium also, only small percentages of AChE activity could be pelleted together with particles. Furthermore, no consistent enrichment of AChE activity in sEV fractions was observed. Little if any AChE activity is produced by the cells we examined, and this activity was mainly present in non-vesicular structures, as shown by electron microscopy. Size-exclusion chromatography and iodixanol gradient separation showed that AChE activity overlaps only minimally with EV-enriched fractions. AChE activity likely betrays exposure to blood products and not EV abundance, echoing the MISEV 2014 and 2018 guidelines and other publications. Additional experiments may be merited to validate these results for other cell types and biological fluids other than blood. (hide)
EV-METRIC
56% (89th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
pseudotyped HIV-1 (NL4-3) infected
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Protein markers
EV: CD63
non-EV: AChE/ p24
Proteomics
no
EV density (g/ml)
Not specified
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
pseudotyped HIV-1 (NL4-3) infected
EV-producing cells
Jurkat
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
50
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
6%
Highest density fraction
18%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
1
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
200000
Duration (min)
60
Fraction volume (mL)
2
Fraction processing
Centrifugation
Pelleting: volume per fraction
35
Pelleting: duration (min)
40
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Detected EV-associated proteins
CD63
Detected contaminants
p24
Not detected contaminants
AChE
Other 1
Acetylcholinesterase assay
Detected EV-associated proteins
Not detected contaminants
AChE
Characterization: Particle analysis
EV180044 1/1 Homo sapiens Cell culture supernatant dUC
Filtration
Biscans A 2018 55%

Study summary

Full title
All authors
Biscans A, Haraszti RA, Echeverria D, Miller R, Didiot MC, Nikan M, Roux L, Aronin N, Khvorova A
Journal
J Cell Sci
Abstract
Small extracellular vesicles (sEVs) show promise as natural nano-devices for delivery of therapeutic (show more...)Small extracellular vesicles (sEVs) show promise as natural nano-devices for delivery of therapeutic RNA, but efficient loading of therapeutic RNA remains a challenge. We have recently shown that the attachment of cholesterol to small interfering RNAs (siRNAs) enables efficient and productive loading into sEVs. Here, we systematically explore the ability of lipid conjugates-fatty acids, sterols, and vitamins-to load siRNAs into sEVs and support gene silencing in primary neurons. Hydrophobicity of the conjugated siRNAs defined loading efficiency and the silencing activity of siRNA-sEVs complexes. Vitamin-E-conjugated siRNA supported the best loading into sEVs and productive RNA delivery to neurons. (hide)
EV-METRIC
55% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Filtration
Adj. k-factor
209.7 (pelleting) / 65.69 (washing)
Protein markers
EV: CD63/ CD81
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Mechanism of uptake/transfer, New methodological development, Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
PCS-500-010
EV-harvesting Medium
Serum free medium
Cell viability
100
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
209.7
Wash: time (min)
90
Wash: Rotor Type
TLA-110
Wash: speed (g)
100000
Wash: adjusted k-factor
65.69
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
microBCA
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, CD81
Not detected contaminants
Calnexin
Proteomics database
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140
EV concentration
Yes
Particle yield
3.20E+08 particles/million cells
EM
EM-type
Transmission-EM
Image type
Wide-field
Extra information
Rotor types and NTA data added post-publication.
EV180042 1/1 Mus musculus Cell culture supernatant dUC Ikebuchi, Yuki 2018 55%

Study summary

Full title
All authors
Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, Udagawa N, Aoki K, Suzuki H.
Journal
Nature
Abstract
Receptor activator of nuclear factor-kappa B (RANK) ligand (RANKL) binds RANK on the surface of oste (show more...)Receptor activator of nuclear factor-kappa B (RANK) ligand (RANKL) binds RANK on the surface of osteoclast precursors to trigger osteoclastogenesis. Recent studies have indicated that osteocytic RANKL has an important role in osteoclastogenesis during bone remodelling; however, the role of osteoblastic RANKL remains unclear. Here we show that vesicular RANK, which is secreted from the maturing osteoclasts, binds osteoblastic RANKL and promotes bone formation by triggering RANKL reverse signalling, which activates Runt-related transcription factor 2 (Runx2). The proline-rich motif in the RANKL cytoplasmic tail is required for reverse signalling, and a RANKL(Pro29Ala) point mutation reduces activation of the reverse signalling pathway. The coupling of bone resorption and formation is disrupted in RANKL(Pro29Ala) mutant mice, indicating that osteoblastic RANKL functions as a coupling signal acceptor that recognizes vesicular RANK. RANKL reverse signalling is therefore a potential pharmacological target for avoiding the reduced bone formation associated with inhibition of osteoclastogenesis. (hide)
EV-METRIC
55% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
RANKL-stimulated
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
209.7 (pelleting) / 209.7 (washing)
Protein markers
EV: CD9/ CD63/ CD81/ RANK
non-EV: Calnexin
Proteomics
yes
Show all info
Study aim
Function, Identification of content (omics approaches)
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Sample Condition
RANKL-stimulated
EV-producing cells
RAW264.7,mouse primary osteoclasts
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
>=18h at >= 100,000g
Cell viability
50
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
60
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
209.7
Wash: time (min)
60
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
209.7
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Concentration
2.5-3.5
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, CD63, CD81
Not detected contaminants
Calnexin
ELISA
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Proteomics database
Yes
Characterization: Particle analysis
EM
EM-type
Transmission-EM
Image type
Close-up
Extra information
Antibody details for Western blot: rabbit anti-CD9 (Abcam, CatNo. ab92726, clone EPR2949, LotNo. GR260186-10, 1:1000), rat anti-CD63 (MBL, CatNo. D263-3, clone R5G2, LotNo. 014, 1:500), hamster anti-CD81 (Bio-Rad, CatNo. MCA1846GA, clone Eat2, LotNo. 0515, 1:500), rabbit anti-Calnexin (Abcam, CatNo. ab22595, polyclonal, LotNo. GR86850-1, 1:500)
EV180033 3/3 Homo sapiens Cell culture supernatant dUC Busatto S 2018 55%

Study summary

Full title
All authors
Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J1.
Journal
Cells
Abstract
Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible (show more...)Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells. (hide)
EV-METRIC
55% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
156.9 (pelleting) / 156.9 (washing)
Protein markers
EV: CD63/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
Commercial EDS
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
156.9
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
156.9
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, CD81
Not detected contaminants
Calnexin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140-210
EV concentration
Yes
Particle yield
100000000
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180013 1/1 Homo sapiens Blood plasma dUC Malin, Steven 2018 55%

Study summary

Full title
All authors
Eichner NZM, Gilbertson NM, Gaitan JM, Heiston EM, Musante L, LaSalvia S, Weltman A, Erdbrügger U, Malin SK
Journal
Physiol Rep
Abstract
Low cardiorespiratory fitness (CRF) is associated with cardiovascular disease (CVD) independent of o (show more...)Low cardiorespiratory fitness (CRF) is associated with cardiovascular disease (CVD) independent of obesity. Extracellular vesicles (EVs) are a novel target of CVD, however, it remains unknown if obese individuals with very poor fitness (VPF) have elevated EVs versus people with poor fitness (PF). Thus, we tested whether VPF was associated with greater EV subtypes in obese adults. Subjects with VPF (n = 13, VO2 peak: 15.4 ± 0.6 mL/kg/min, BMI: 34.1 ± 1.7 kg/m2 ) and PF (n = 13, VO2 peak: 25.9 ± 3.0 mL/kg/min, BMI: 32.1 ± 1.2 kg/m2 ) were compared in this cross-sectional study. After an overnight fast, AnnexinV (AV) +/- platelet (CD31+ /CD41+ ), leukocyte (CD45+ /CD41- ), and endothelial EVs (CD105+ , CD31+ /CD41- ) were analyzed from fresh platelet poor plasma via imaging flow cytometry. Body fat, blood pressure (BP), and glucose tolerance (OGTT) were also tested. Body weight, BP, and circulating glucose were similar between groups, although VPF subjects were older than PF (64.0 ± 2.1 vs. 49.8 ± 4.2 year; P < 0.05). People with VPF, compared with PF, had higher total AV- EVs (P = 0.04), AV- platelet EVs (CD31+ /CD41+ ; P = 0.006), and AV- endothelial EVs (CD31+ /CD41- ; P = 0.005) independent of age and body fat. Higher AV- platelet and endothelial EVs were associated with lower VO2 peak (r = -0.56, P = 0.006 and r = -0.55, P = 0.005, respectively). Endothelial-derived AV- /CD31+ /CD41- EVs were also related to pulse pressure (r = 0.45, P = 0.03), whereas AV- /CD105 was linked to postprandial glucose (r = 0.41, P = 0.04). VPF is associated with higher AnnexinV- total, endothelial, and platelet EVs in obese adults, suggesting that subtle differences in fitness may reduce type 2 diabetes and CVD risk through an EV-related mechanism. (hide)
EV-METRIC
55% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Prediabetes
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC
Adj. k-factor
113.7 (pelleting) / 379.2 (washing)
Protein markers
EV: CD9/ TSG101/ CD31/ CD41/ CD45/ CD105
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Sample Condition
Prediabetes
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting: time(min)
15
Pelleting: rotor type
FA-45-24-11
Pelleting: speed (g)
50000
Pelleting: adjusted k-factor
113.7
Wash: time (min)
10
Wash: Rotor Type
FA-45-24-11
Wash: speed (g)
15000
Wash: adjusted k-factor
379.2
Characterization: Protein analysis
PMID previous EV protein analysis
Western blot
Extra characterization
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, TSG101
Flow cytometry
Type of Flow cytometry
ImageStream MKII Imaging Flow Cytometer
Hardware adjustments
Hardware adaptation is not needed for ImageStream. Controls included single stained EV samples, buffer only controls (collected for 2 min after filtering with a 0.1 µm filter), buffer plus antibodies
Calibration bead size
0.22
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
168
TRPS
Report type
Mean
Reported size (nm)
182
EM
EM-type
Cryo-EM
Image type
Wide-field
EV180065 1/1 Homo sapiens Cell culture supernatant Ultrafiltration
Filtration
(Differential) (ultra)centrifugation
Density gradient
Deschamps T 2018 50%

Study summary

Full title
All authors
Deschamps T, Kalamvoki M
Journal
J Virol
Abstract
Herpes simplex virus 1 (HSV-1)-infected cells release extracellular vesicles (EVs) that deliver to u (show more...)Herpes simplex virus 1 (HSV-1)-infected cells release extracellular vesicles (EVs) that deliver to uninfected cells viral factors and host components, such as the stimulator of interferon genes (STING), which activates type I interferon upon foreign DNA sensing. The functions of EVs released by HSV-1-infected cells have remained unknown. Here, we describe a procedure to separate the EVs from HSV-1 virions that is based on an iodixanol/sucrose gradient. STING, along with the EV markers CD63 and CD9, was found in light-density fractions, while HSV components accumulated in heavy-density fractions. HSV-1 infection stimulated the release of EVs from the cells. The EVs derived from infected cells, but not from uninfected cells, activated innate immunity in recipient cells and suppressed viral gene expression and virus replication. Moreover, only the EVs derived from infected cells stimulated the expression of a subset of M1-type markers in recipient macrophages. Conversely, EVs derived from STING-knockdown cells failed to stimulate the expression of these M1-type markers, they activated innate immune responses to a lesser extent in recipient cells, and they did not sustain the inhibition of virus replication. These data suggest that STING from the EV donor cells contributes to the antiviral responses in cells receiving EVs from HSV-1-infected cells. Perturbations in the biogenesis of EVs by silencing CD63 or blocking the activity of the neutral spingomyelinase-2 (nSMase-2) increased the HSV-1 yields. Overall, our data suggest that the EVs released from HSV-1-infected cells negatively impact the infection and could control the dissemination of the virus.IMPORTANCE Extracellular vesicles (EVs) are released by all types of cells as they constitute major mechanism of intercellular communication and have the capacity to alter the functions of recipient cells despite their limited capacity for cargo. How the EVs released by HSV-infected cells could alter the surrounding microenvironment and influence the infection currently remains unknown. The cargo of EVs reflects the physiological state of the cells in which they were produced, so the content of EVs originating from infected cells is expected to be substantially different from that of healthy cells. Our studies indicate that the EVs released by HSV-1-infected cells carry innate immune components such as STING and other host and viral factors; they can activate innate immune responses in recipient cells and inhibit HSV-1 replication. The implication of these data is that the EVs released by HSV-1-infected cells could control HSV-1 dissemination promoting its persistence in the host. (hide)
EV-METRIC
50% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
HSV-1 (herpes simplex 1 virus)-infected
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Ultrafiltration + Filtration + (Differential) (ultra)centrifugation + Density gradient
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Function/Mechanism of uptake/transfer/Biogenesis/cargo sorting/New methodological development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
HSV-1 (herpes simplex 1 virus)-infected
EV-producing cells
HEL
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Density gradient
Density medium
Iodixanol
Type
Discontinuous
Number of initial discontinuous layers
11
Lowest density fraction
18%
Highest density fraction
6%
Total gradient volume, incl. sample (mL)
12
Orientation
Top-down
Rotor type
SW 41 Ti
Speed (g)
250000
Duration (min)
120
Fraction volume (mL)
0.5
Fraction processing
Dialysis and ultrafiltration
Ultra filtration
Cut-off size (kDa)
30
Membrane type
Regenerated cellulose
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Detected EV-associated proteins
Flotillin2/ CD9/ TSG101/ CD63/ STING
Fluorescent NTA
Relevant measurements variables specified?
NA
Characterization: Particle analysis
NTA
Report type
Median
Reported size (nm)
180
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180033 2/3 Homo sapiens Cell culture supernatant dUC
Tangential flow filtration
Busatto S 2018 50%

Study summary

Full title
All authors
Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, Bergese P, Wolfram J1.
Journal
Cells
Abstract
Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible (show more...)Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells. (hide)
EV-METRIC
50% (86th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
dUC + Tangential flow filtration
Protein markers
EV: CD63/ CD81
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Sample Condition
Control condition
EV-producing cells
MDAMB231
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
Commercial EDS
Cell viability
95
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Other
Name other isolation method
Tangential flow filtration
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63, CD81
Not detected contaminants
Calnexin
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
140-210
EV concentration
Yes
Particle yield
10000000000
EM
EM-type
Transmission-EM
Image type
Wide-field