Search > Results

You searched for: 2017 (Year of publication)

Showing 151 - 200 of 829

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in sample origin
Experiment number
  • Experiments differ in sample origin
Experiment number
  • Experiments differ in sample origin
Experiment number
  • Experiments differ in Sample type, Sample condition
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV230018 1/2 Homo sapiens HEK293 (d)(U)C Zheng T 2017 33%

Study summary

Full title
All authors
Zheng T, Pu J, Chen Y, Guo Z, Pan H, Zhang L, Zhang H, Sun B, Zhang B
Journal
Neurotox Res
Abstract
This study aimed to investigate the neurotoxicity of exosomes to cultured neuroblastoma and neurons (show more...)This study aimed to investigate the neurotoxicity of exosomes to cultured neuroblastoma and neurons in vitro and to mature and newborn neurons in the hippocampus in vivo. Recent in vitro and in vivo studies have shown that exosomes, small membranous vesicles secreted from many cell types, contain pathogenic proteins including full-length amyloid precursor protein (flAPP) and amyloid precursor protein (APP) metabolites. However, the function of these exosomes in Alzheimer disease (AD) has not been much explored. In the present study, exosomes were harvested from the conditioned medium of HEK293-APP Swe/Ind cells and injected into the hippocampal dentate gyrus region via a stereotactic method to detect their effects on the neuronal survival in vivo. These exosomes containing pathogenic proteins showed high neurotoxicity and could impair neurogenesis in the hippocampus. The data demonstrated that exosomes secreted from sick cells might damage neurogenesis and promote disease progression in AD. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
APP Swe/Ind
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ TSG101/ flAPP/ APP CTFs
non-EV: GM130
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: speed (g)
100000
Wash: time (min)
60
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ TSG101/ flAPP/ APP CTFs
Not detected contaminants
GM130
Characterization: Lipid analysis
No
EV230018 2/2 Homo sapiens HEK293 (d)(U)C Zheng T 2017 33%

Study summary

Full title
All authors
Zheng T, Pu J, Chen Y, Guo Z, Pan H, Zhang L, Zhang H, Sun B, Zhang B
Journal
Neurotox Res
Abstract
This study aimed to investigate the neurotoxicity of exosomes to cultured neuroblastoma and neurons (show more...)This study aimed to investigate the neurotoxicity of exosomes to cultured neuroblastoma and neurons in vitro and to mature and newborn neurons in the hippocampus in vivo. Recent in vitro and in vivo studies have shown that exosomes, small membranous vesicles secreted from many cell types, contain pathogenic proteins including full-length amyloid precursor protein (flAPP) and amyloid precursor protein (APP) metabolites. However, the function of these exosomes in Alzheimer disease (AD) has not been much explored. In the present study, exosomes were harvested from the conditioned medium of HEK293-APP Swe/Ind cells and injected into the hippocampal dentate gyrus region via a stereotactic method to detect their effects on the neuronal survival in vivo. These exosomes containing pathogenic proteins showed high neurotoxicity and could impair neurogenesis in the hippocampus. The data demonstrated that exosomes secreted from sick cells might damage neurogenesis and promote disease progression in AD. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Null vector
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix/ TSG101/ flAPP/ APP CTFs
non-EV: GM130
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HEK293
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: speed (g)
100000
Wash: time (min)
60
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix/ TSG101
Not detected EV-associated proteins
flAPP/ APP CTFs
Not detected contaminants
GM130
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
86
EM
EM-type
Transmission-EM
Image type
Close-up
EV220185 6/10 Homo sapiens Serum (d)(U)C
DG
Filtration
Szczepanek D 2017 33%

Study summary

Full title
All authors
Szczepanek D, Wąsik-Szczepanek E, Stoma F, Sokołowska B, Trojanowski T
Journal
BMC Cancer
Abstract
Primary central nervous system lymphoma (PCNSL) comprises around 3-5% of primary central nervous sys (show more...)Primary central nervous system lymphoma (PCNSL) comprises around 3-5% of primary central nervous system (CNS) tumours and around 1% of all non-Hodgkin lymphoma (NHL). Diffuse large B-cell lymphoma (DLBCL) is the most common histological type. High effectiveness of chemo- and radiotherapy for PCNSL regrettably does not eliminate significant risks of recurrence for CNS tumours. That results in higher interest in other treatment options, including surgical procedures. PCNSL remains in the scope of interest for many specialists and neurosurgeons seem to play a more important role. (hide)
EV-METRIC
33% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: CD9/ GGT1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: speed (g)
110000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Speed (g)
110000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
TDB
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ GGT1
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220185 9/10 Homo sapiens Serum (d)(U)C
DG
Filtration
Szczepanek D 2017 33%

Study summary

Full title
All authors
Szczepanek D, Wąsik-Szczepanek E, Stoma F, Sokołowska B, Trojanowski T
Journal
BMC Cancer
Abstract
Primary central nervous system lymphoma (PCNSL) comprises around 3-5% of primary central nervous sys (show more...)Primary central nervous system lymphoma (PCNSL) comprises around 3-5% of primary central nervous system (CNS) tumours and around 1% of all non-Hodgkin lymphoma (NHL). Diffuse large B-cell lymphoma (DLBCL) is the most common histological type. High effectiveness of chemo- and radiotherapy for PCNSL regrettably does not eliminate significant risks of recurrence for CNS tumours. That results in higher interest in other treatment options, including surgical procedures. PCNSL remains in the scope of interest for many specialists and neurosurgeons seem to play a more important role. (hide)
EV-METRIC
33% (76th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Prostate Cancer
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Density gradient
Filtration
Protein markers
EV: CD9/ GGT1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: speed (g)
110000
Density gradient
Only used for validation of main results
Yes
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
5%
Highest density fraction
40%
Total gradient volume, incl. sample (mL)
12
Sample volume (mL)
0.5
Orientation
Top-down
Speed (g)
110000
Duration (min)
960
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
12
Pelleting: speed (g)
110000
Pelleting: adjusted k-factor
TDB
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ GGT1
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220140 1/1 Homo sapiens MCF7 (d)(U)C
Filtration
Potrich C 2017 33%

Study summary

Full title
All authors
Potrich C, Lunelli L, Vaghi V, Pasquardini L, Pederzolli C
Journal
Eur Biophys J
Abstract
A new communication route among cells was reported in recent years, via extracellular vesicles and t (show more...)A new communication route among cells was reported in recent years, via extracellular vesicles and their cargo. Exosomes in particular are attracting increasing interest as privileged mediators of this cell communication route. The exosome-mediated transfer of nucleic acids, especially of microRNAs, is particularly promising for their use both as biomarkers of pathologies and as a therapeutic tool. Here, a simplified model of interaction among cells, microRNAs and vesicles is studied using a biophysical approach. A synthetic and fluorescent microRNA (i.e. miR-1246 conjugated with TAMRA) was selected to model cell communication, monitoring its internalization in cells. The fluorescent miR-1246, either naked or included in synthetic or natural vesicles, was incubated with human breast adenocarcinoma cells (MCF7) for different times. A comparison between this human microRNA and its DNA copy or an exogenous microRNA (from Caenorhabditis elegans) allowed assessment of the specificity of the information transfer through microRNAs, and especially associated with exosomes. The uptake of naked miR-1246 was indeed higher both in terms of number of targeted cells and intensity of fluorescence signal with respect to the other nucleic acids tested. The same occurred with miR-1246 loaded exosomes, evidencing a specific uptake only partially due to the lipidic components and present only when the human microRNA was loaded in exosomes, which were themselves derived from the same MCF7 cells. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: CD63/ TSG101/ CD9
non-EV: Calreticulin
Proteomics
no
Show all info
Study aim
Biomarker/Mechanism of uptake/transfer
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
MCF7
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
70.1 Ti
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: Rotor Type
70.1 Ti
Wash: speed (g)
100000
Filtration steps
0.2 or 0.22 µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ TSG101/ CD9
Not detected contaminants
Calreticulin
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220055 2/4 Homo sapiens Pre-eclamptic placentae explants (d)(U)C Xiao X 2017 33%

Study summary

Full title
All authors
Xiao X, Xiao F, Zhao M, Tong M, Wise MR, Stone PR, Chamley LW, Chen Q
Journal
J Reprod Immunol
Abstract
Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by to (show more...)Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by toxic/dangerous factors from the placenta, including placental extracellular vesicles (EVs). Why placental EVs become toxic is unknown. We previously reported that preeclamptic sera produced toxic/dangerous placental macrovesicles but whether small EVs are also toxic/dangerous in preeclampsia is unknown. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: HMGB1/ beta-actin
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Pre-eclamptic placentae explants
EV-harvesting Medium
Serum-containing medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HMGB1/ beta-actin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220055 4/4 Homo sapiens Normotensive placentae explants (d)(U)C Xiao X 2017 33%

Study summary

Full title
All authors
Xiao X, Xiao F, Zhao M, Tong M, Wise MR, Stone PR, Chamley LW, Chen Q
Journal
J Reprod Immunol
Abstract
Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by to (show more...)Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by toxic/dangerous factors from the placenta, including placental extracellular vesicles (EVs). Why placental EVs become toxic is unknown. We previously reported that preeclamptic sera produced toxic/dangerous placental macrovesicles but whether small EVs are also toxic/dangerous in preeclampsia is unknown. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: HMGB1/ beta-actin
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Normotensive placentae explants
EV-harvesting Medium
Serum-containing medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
JA-30.50
Pelleting: speed (g)
100000
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
HMGB1/ beta-actin
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
EV220019 2/2 Homo sapiens 30KT (d)(U)C
Filtration
Lobb RJ 2017 33%

Study summary

Full title
All authors
Lobb RJ, van Amerongen R, Wiegmans A, Ham S, Larsen JE, Möller A
Journal
Int J Cancer
Abstract
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of (show more...)Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
p53/KRAS/LKB1
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: HSP70/ CD63
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
30KT
EV-harvesting Medium
Serum free medium
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
Type 50.2 Ti
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: Rotor Type
Type 50.2 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
Yes
Detected EV-associated proteins
CD63/ HSP70
Not detected contaminants
Calnexin
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution
Reported size (nm)
50250
EV concentration
Yes
EM
EM-type
Transmission-EM
Image type
Close-up
EV210493 1/4 Homo sapiens hCMEC/D3 (d)(U)C Dozio V 2017 33%

Study summary

Full title
All authors
Dozio V, Sanchez JC
Journal
J Extracell Vesicles
Abstract
Little is known about the composition and functional differences between extracellular vesicle (EV) (show more...)Little is known about the composition and functional differences between extracellular vesicle (EV) subsets, such as microvesicles (MVs) and exosomes (EXOs), nor to what extent their cargo reflects the phenotypic state of the cell of origin. Brain endothelial cells are the constitutive part of the blood-brain barrier (BBB), a selective barrier that maintains brain homeostasis. BBB impairment is associated with several neuroinflammatory diseases with the pro-inflammatory cytokine tumour necrosis factor (TNF) often playing a key role. In the present study, shotgun proteomics and parallel reaction monitoring (PRM)-based targeted mass spectrometry were used to characterise brain endothelial cell-released EVs, and to study how TNF exposure modulated EV protein cargoes. MVs were found to be enriched in mitochondrial and cytoskeletal proteins, whereas EXOs were enriched in adhesion, histone and ribosomal proteins. After stimulation with TNF, several proteins involved in TNF and NF-κB signalling pathways, that were found to be differentially expressed in cells, were also differentially expressed in both MVs and EXOs. Thus, our results revealed some novel proteins as potentially useful candidates for discriminating between MVs and EXOs, together with additional evidence that cells "package" proteins in EVs systematically and according to their phenotypic state. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: GRP94
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hCMEC/D3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
18000
Wash: time (min)
30
Wash: Rotor Type
SW 55 Ti
Wash: speed (g)
18000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix
Detected contaminants
GRP94
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
215/ 375
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
150-300
EV210493 2/4 Homo sapiens hCMEC/D3 (d)(U)C Dozio V 2017 33%

Study summary

Full title
All authors
Dozio V, Sanchez JC
Journal
J Extracell Vesicles
Abstract
Little is known about the composition and functional differences between extracellular vesicle (EV) (show more...)Little is known about the composition and functional differences between extracellular vesicle (EV) subsets, such as microvesicles (MVs) and exosomes (EXOs), nor to what extent their cargo reflects the phenotypic state of the cell of origin. Brain endothelial cells are the constitutive part of the blood-brain barrier (BBB), a selective barrier that maintains brain homeostasis. BBB impairment is associated with several neuroinflammatory diseases with the pro-inflammatory cytokine tumour necrosis factor (TNF) often playing a key role. In the present study, shotgun proteomics and parallel reaction monitoring (PRM)-based targeted mass spectrometry were used to characterise brain endothelial cell-released EVs, and to study how TNF exposure modulated EV protein cargoes. MVs were found to be enriched in mitochondrial and cytoskeletal proteins, whereas EXOs were enriched in adhesion, histone and ribosomal proteins. After stimulation with TNF, several proteins involved in TNF and NF-κB signalling pathways, that were found to be differentially expressed in cells, were also differentially expressed in both MVs and EXOs. Thus, our results revealed some novel proteins as potentially useful candidates for discriminating between MVs and EXOs, together with additional evidence that cells "package" proteins in EVs systematically and according to their phenotypic state. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Alix
non-EV: GRP94
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
hCMEC/D3
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
Commercial EDS
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: rotor type
SW 32 Ti
Pelleting: speed (g)
100000
Wash: time (min)
70
Wash: Rotor Type
SW 55 Ti
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Detected EV-associated proteins
Alix
Not detected contaminants
GRP94
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
150
EM
EM-type
Transmission-EM
Image type
Wide-field
Report size (nm)
40-120
EV210448 1/2 Homo sapiens THP-1 (d)(U)C
UF
Reales-Calderón JA 2017 33%

Study summary

Full title
All authors
Reales-Calderón JA, Vaz C, Monteoliva L, Molero G, Gil C
Journal
J Proteome Res
Abstract
The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective (show more...)The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, noncoding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus we have undertaken the first quantitative proteomic analysis on the protein composition of THP-1 macrophage-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP-1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP-1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity/ while in THP-1 nondifferenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Protein markers
EV: Vimentin/ peroxiredoxin-5/ transferrin receptor
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
THP-1
EV-harvesting Medium
Serum-containing medium
Cell count
9E8
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: speed (g)
100000
Wash: time (min)
60
Wash: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100
Membrane type
NS
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Vimentin/ peroxiredoxin-5/ transferrin receptor
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210448 2/2 Homo sapiens THP-1 (d)(U)C
UF
Reales-Calderón JA 2017 33%

Study summary

Full title
All authors
Reales-Calderón JA, Vaz C, Monteoliva L, Molero G, Gil C
Journal
J Proteome Res
Abstract
The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective (show more...)The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, noncoding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus we have undertaken the first quantitative proteomic analysis on the protein composition of THP-1 macrophage-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP-1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP-1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity/ while in THP-1 nondifferenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Candida albicans
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Ultrafiltration
Protein markers
EV: Vimentin/ peroxiredoxin-5/ transferrin receptor
non-EV: None
Proteomics
yes
Show all info
Study aim
Function/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
THP-1
EV-harvesting Medium
Serum-containing medium
Cell count
9E8
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: speed (g)
100000
Wash: time (min)
60
Wash: speed (g)
100000
Ultra filtration
Cut-off size (kDa)
100
Membrane type
NS
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Vimentin/ peroxiredoxin-5/ transferrin receptor
Proteomics database
Yes:
Characterization: Lipid analysis
No
Characterization: Particle analysis
DLS
Report type
Size range/distribution
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV210246 1/2 Homo sapiens Blood plasma (d)(U)C Menck K 2017 33%

Study summary

Full title
All authors
Menck K, Bleckmann A, Schulz M, Ries L, Binder C
Journal
J Vis Exp
Abstract
The release of extracellular vesicles (EVs) including small endosomal-derived exosomes (Exos, diamet (show more...)The release of extracellular vesicles (EVs) including small endosomal-derived exosomes (Exos, diameter < 100 nm) and large plasma membrane-derived microvesicles (MVs, diameter > 100 nm) is a fundamental cellular process that occurs in all living cells. These vesicles transport proteins, lipids and nucleic acids specific for their cell of origin and in vitro studies have highlighted their importance as mediators of intercellular communication. EVs have been successfully isolated from various body fluids and especially EVs in blood have been identified as promising biomarkers for cancer or infectious diseases. In order to allow the study of MV subpopulations in blood, we present a protocol for the standardized isolation and characterization of MVs from peripheral blood samples. MVs are pelleted from EDTA-anticoagulated plasma samples by differential centrifugation and typically possess a diameter of 100 - 600 nm. Due to their larger size, they can easily be studied by flow cytometry, a technique that is routinely used in clinical diagnostics and available in most laboratories. Several examples for quality control assays of the isolated MVs will be given and markers that can be used for the discrimination of different MV subpopulations in blood will be presented. (hide)
EV-METRIC
33% (66th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: CD62/ CD45/ Tubulin/ CD235a/ CD9/ CD81
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
35
Pelleting: rotor type
Not specified
Pelleting: speed (g)
14000
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ Tubulin/ CD81
Flow cytometry
Type of Flow cytometry
Not specified
Calibration bead size
Not specified
Antibody details provided?
No
Detected EV-associated proteins
CD62/ CD45/ CD235a
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
201
EV concentration
Yes
Particle yield
as number of particles per milliliter of starting sampl: 5.00e+0
EM
EM-type
Transmission-EM
Image type
Close-up
EV210188 2/3 Homo sapiens Urine (d)(U)C
Filtration
Sequeiros, Tamara 2017 33%

Study summary

Full title
All authors
Tamara Sequeiros, Marina Rigau, Cristina Chiva, Melania Montes, Iolanda Garcia-Grau, Marta Garcia, Sherley Diaz, Ana Celma, Irene Bijnsdorp, Alex Campos, Primiano Di Mauro, Salvador Borrós, Jaume Reventós 10 , Andreas Doll, Rosanna Paciucci, Michiel Pegtel 11 , Inés de Torres, Eduard Sabidó, Juan Morote, Mireia Olivan
Journal
Oncotarget
Abstract
Rapid and reliable diagnosis of prostate cancer (PCa) is highly desirable as current used methods la (show more...)Rapid and reliable diagnosis of prostate cancer (PCa) is highly desirable as current used methods lack specificity. In addition, identification of PCa biomarkers that can classify patients into high- and low-risk groups for disease progression at early stage will improve treatment decision-making. Here, we describe a set of protein-combination panels in urinary extracellular vesicles (EVs), defined by targeted proteomics and immunoblotting techniques that improve early non-invasive detection and stratification of PCa patients.We report a two-protein combination in urinary EVs that classifies benign and PCa patients (ADSV-TGM4), and a combination of five proteins able to significantly distinguish between high- and low-grade PCa patients (CD63-GLPK5-SPHM-PSA-PAPP). Proteins composing the panels were validated by immunohistochemistry assays in tissue microarrays (TMAs) confirming a strong link between the urinary EVs proteome and alterations in PCa tissues. Moreover, ADSV and TGM4 abundance yielded a high diagnostic potential in tissue and promising TGM4 prognostic power. These results suggest that the proteins identified in urinary EVs distinguishing high- and low grade PCa are a reflection of histological changes that may be a consequence of their functional involvement in PCa development. In conclusion, our study resulted in the identification of protein-combination panels present in urinary EVs that exhibit high sensitivity and specificity for PCa detection and patient stratification. Moreover, our study highlights the potential of targeted proteomic approaches-such as selected reaction monitoring (SRM)-as diagnostic assay for liquid biopsies via urinary EVs to improve diagnosis and prognosis of suspected PCa patients. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TSG101/ TGM4/ ADSV/ CD81
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Not specified
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
60
Wash: Rotor Type
Not specified
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
ADSV/ TSG101/ CD81/ TGM4
Proteomics database
Yes: ProteomeXchange Consortiu
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Not Reported
EV concentration
Yes
Particle yield
Not Reported NA
EM
EM-type
Transmission-EM
Image type
Close-up
EV210102 1/2 Homo sapiens Urine (d)(U)C
Filtration
Wang, Ling 2017 33%

Study summary

Full title
All authors
Ling Wang, Tore Skotland, Viktor Berge, Kirsten Sandvig, Alicia Llorente
Journal
Eur J Pharm Sci.
Abstract
Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumor-spec (show more...)Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumor-specific molecules can be found in exosomes isolated from biological fluids. We have previously analyzed the proteome of urinary exosomes by mass spectrometry, and identified proteins differentially expressed in prostate cancer patients compared to healthy males. Since mass spectrometry is so far not commonly used in clinical laboratories, we have here investigated whether antibody-based methods such as Western blot or ELISA can be used to validate the use of the identified proteins as prostate cancer biomarkers. Western blot experiments designed to detect flotillin 2, TMEM256, Rab3B and LAMTOR1 showed that the level of these proteins was higher in urinary exosomes from prostate cancer patients compared to healthy males. Furthermore, a receiver operating characteristic curve of flotillin 2 in samples from 16 controls and 16 patients showed an area under the curve of 0.91, and 88% sensitivity at a threshold set to give 94% specificity. In addition, ELISA-based detection of flotillin 2 and PARK7 showed that the combination of these proteins was able to distinguish prostate cancer patients and healthy controls with 68% sensitivity and 93% specificity. Several promising biomarkers identified by mass spectrometry could not be evaluated by Western blot or ELISA due to their low exosomal amount and/or lack of good antibodies. In conclusion, our results show that several urinary exosomal proteins identified as prostate cancer biomarkers by mass spectrometry have a high diagnostic value also when analyzed by immunology-based methods, thus bringing these biomarkers closer to a potential clinical use. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Prostate cancer
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TMEM256/ PARK7/ Flotillin1/ RAB3B/ Flotillin2/ LAMTOR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ RAB3B/ TMEM256/ LAMTOR1/ Flotillin2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Flotillin2/ PARK7
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210102 2/2 Homo sapiens Urine (d)(U)C
Filtration
Wang, Ling 2017 33%

Study summary

Full title
All authors
Ling Wang, Tore Skotland, Viktor Berge, Kirsten Sandvig, Alicia Llorente
Journal
Eur J Pharm Sci.
Abstract
Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumor-spec (show more...)Exosomes have recently appeared as a novel source of non-invasive cancer biomarkers since tumor-specific molecules can be found in exosomes isolated from biological fluids. We have previously analyzed the proteome of urinary exosomes by mass spectrometry, and identified proteins differentially expressed in prostate cancer patients compared to healthy males. Since mass spectrometry is so far not commonly used in clinical laboratories, we have here investigated whether antibody-based methods such as Western blot or ELISA can be used to validate the use of the identified proteins as prostate cancer biomarkers. Western blot experiments designed to detect flotillin 2, TMEM256, Rab3B and LAMTOR1 showed that the level of these proteins was higher in urinary exosomes from prostate cancer patients compared to healthy males. Furthermore, a receiver operating characteristic curve of flotillin 2 in samples from 16 controls and 16 patients showed an area under the curve of 0.91, and 88% sensitivity at a threshold set to give 94% specificity. In addition, ELISA-based detection of flotillin 2 and PARK7 showed that the combination of these proteins was able to distinguish prostate cancer patients and healthy controls with 68% sensitivity and 93% specificity. Several promising biomarkers identified by mass spectrometry could not be evaluated by Western blot or ELISA due to their low exosomal amount and/or lack of good antibodies. In conclusion, our results show that several urinary exosomal proteins identified as prostate cancer biomarkers by mass spectrometry have a high diagnostic value also when analyzed by immunology-based methods, thus bringing these biomarkers closer to a potential clinical use. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: TMEM256/ PARK7/ Flotillin1/ RAB3B/ Flotillin2/ LAMTOR1
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Not specified
Wash: time (min)
70
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotillin1/ Flotillin2/ RAB3B/ LAMTOR1/ TMEM256
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Flotillin2/ PARK7
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV170070 1/1 Homo sapiens CEPH/UTAH family PEDIGREE 1463 peripheral blood B lymphocyte (d)(U)C
Filtration
Tsang EK 2017 33%

Study summary

Full title
All authors
Tsang EK, Abell NS, Li X, Anaya V, Karczewski KJ, Knowles DA, Sierra RG, Smith KS, Montgomery SB.
Journal
G3 (Bethesda)
Abstract
Exosomes are small extracellular vesicles that carry heterogeneous cargo, including RNA, between cel (show more...)Exosomes are small extracellular vesicles that carry heterogeneous cargo, including RNA, between cells. Increasing evidence suggests that exosomes are important mediators of intercellular communication and biomarkers of disease. Despite this, the variability of exosomal RNA between individuals has not been well quantified. To assess this variability, we sequenced the small RNA of cells and exosomes from a 17-member family. Across individuals, we show that selective export of miRNAs occurs not only at the level of specific transcripts, but that a cluster of 74 mature miRNAs on chromosome 14q32 is massively exported in exosomes while mostly absent from cells. We also observe more interindividual variability between exosomal samples than between cellular ones and identify four miRNA expression quantitative trait loci shared between cells and exosomes. Our findings indicate that genomically colocated miRNAs can be exported together and highlight the variability in exosomal miRNA levels between individuals as relevant for exosome use as diagnostics. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Epstein-Barr virus-transformed
Focus vesicles
exosome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: HSP70
non-EV: Calnexin
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
CEPH/UTAH family PEDIGREE 1463 peripheral blood B lymphocyte
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
120000
Wash: time (min)
70
Wash: Rotor Type
TLA-100.3
Wash: speed (g)
120000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
HSP70
Not detected contaminants
Calnexin
Characterization: RNA analysis
RNA analysis
Type
RNA sequencing
Database
Yes
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
107
EM
EM-type
Transmission-EM
Image type
Close-up
Report size (nm)
100
EV170054 2/5 Homo sapiens Urine (d)(U)C
Filtration
SEC
UF
Gheinani AH 2017 33%

Study summary

Full title
All authors
Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K
Journal
Sci Rep
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RN (show more...)Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
SEC
UF
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Filtration steps
0.22µm or 0.2µm
Ultra filtration
Cut-off size (kDa)
10
Membrane type
Polyethersulfone (PES)
Size-exclusion chromatography
Total column volume (mL)
23
Sample volume/column (mL)
0.4
Resin type
Sepharose CL-2B
Characterization: Protein analysis
None
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Protein Yield (µg)
5.7
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mode;mean;size range/distribution;D10;D50;D90
Reported size (nm)
113
EV concentration
Yes
Particle yield
see Fig1A
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170054 3/5 Homo sapiens Urine (d)(U)C
PEG precipitation
Gheinani AH 2017 33%

Study summary

Full title
All authors
Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K
Journal
Sci Rep
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RN (show more...)Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
PEG precipitation
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
None
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Protein Yield (µg)
8.4
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mode;mean;size range/distribution;D10;D50;D90
Reported size (nm)
138
EV concentration
Yes
Particle yield
see Fig1A
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170054 4/5 Homo sapiens Urine (d)(U)C
PEG precipitation
SEC
Gheinani AH 2017 33%

Study summary

Full title
All authors
Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K
Journal
Sci Rep
Abstract
Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RN (show more...)Circulating miRNAs are detected in extracellular space and body fluids such as urine. Circulating RNAs can be packaged in secreted urinary extracellular vesicles (uEVs) and thus protected from degradation. Urinary exosome preparations might contain specific miRNAs, relevant as biomarkers in renal and bladder diseases. Major difficulties in application of uEVs into the clinical environment are the high variability and low reproducibility of uEV isolation methods. Here we used five different methods to isolate uEVs and compared the size distribution, morphology, yield, presence of exosomal protein markers and RNA content of uEVs. We present an optimized ultracentrifugation and size exclusion chromatography approach for highly reproducible isolation for 50-150 nm uEVs, corresponding to the exosomes, from 50 ml urine. We profiled the miRNA content of uEVs and total urine from the same samples with the NanoString platform and validated the data using qPCR. Our results indicate that 18 miRNAs, robustly detected in uEVs were always present in the total urine. However, 15 miRNAs could be detected only in the total urine preparations and might represent naked circulating miRNA species. This is a novel unbiased and reproducible strategy for uEVs isolation, content normalization and miRNA cargo analysis, suitable for biomarker discovery studies. (hide)
EV-METRIC
33% (65th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
PEG precipitation
SEC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Size-exclusion chromatography
Total column volume (mL)
23
Sample volume/column (mL)
0.4
Resin type
Sepharose CL-2B
Other
Name other separation method
PEG precipitation
Characterization: Protein analysis
None
Protein Concentration Method
Fluorometric assay (e.g. Qubit, NanoOrange,...)
Protein Yield (µg)
2.3
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Mode;mean;size range/distribution;D10;D50;D90
Reported size (nm)
106
EV concentration
Yes
Particle yield
see Fig1A
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV170047 6/8 Homo sapiens DUCaP (d)(U)C Soekmadji C 2017 33%

Study summary

Full title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DHT
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
DUCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
1.6
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
120
EV170047 7/8 Homo sapiens DUCaP (d)(U)C Soekmadji C 2017 33%

Study summary

Full title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Charcoal stripped serum
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
DUCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
1.2
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
120
EV170047 8/8 Homo sapiens DUCaP (d)(U)C Soekmadji C 2017 33%

Study summary

Full title
All authors
Soekmadji C, Riches JD, Russell PJ, Ruelcke JE, McPherson S, Wang C, Hovens CM, Corcoran NM, Hill MM, Nelson CC
Journal
Oncotarget
Abstract
Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by (show more...)Proliferation and maintenance of both normal and prostate cancer (PCa) cells is highly regulated by steroid hormones, particularly androgens, and the extracellular environment. Herein, we identify the secretion of CD9 positive extracellular vesicles (EV) by LNCaP and DUCaP PCa cells in response to dihydrotestosterone (DHT) and use nano-LC-MS/MS to identify the proteins present in these EV. Subsequent bioinformatic and pathway analyses of the mass spectrometry data identified pathologically relevant pathways that may be altered by EV contents. Western blot and CD9 EV TR-FIA assay confirmed a specific increase in the amount of CD9 positive EV in DHT-treated LNCaP and DUCaP cells and treatment of cells with EV enriched with CD9 after DHT exposure can induce proliferation in androgen-deprived conditions. siRNA knockdown of endogenous CD9 in LNCaPs reduced cellular proliferation and expression of AR and prostate specific antigen (PSA) however knockdown of AR did not alter CD9 expression, also implicating CD9 as an upstream regulator of AR. Moreover CD9 positive EV were also found to be significantly higher in plasma from prostate cancer patients in comparison with benign prostatic hyperplasia patients. We conclude that CD9 positive EV are involved in mediating paracrine signalling and contributing toward prostate cancer progression. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alix/ TSG101/ PSA/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
DUCaP
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: speed (g)
100000
Wash: time (min)
90
Wash: speed (g)
100000
Characterization: Protein analysis
Protein Concentration Method
BCA
Protein Yield (µg)
1.1
Western Blot
Antibody details provided?
No
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
Alix/ CD9/ TSG101
Not detected EV-associated proteins
PSA
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Size range/distribution,Mode
Reported size (nm)
140
EM
EM-type
Transmission-EM
Image type
Wide-field
EV180003 2/3 Homo sapiens primary glioblastoma cells (d)(U)C André-Grégoire G 2017 33%

Study summary

Full title
All authors
André-Grégoire G, Bidère N, Gavard J
Journal
Biochimie
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary tumour within the brain as well as the (show more...)Glioblastoma multiforme (GBM) is the most aggressive primary tumour within the brain as well as the most common and lethal cerebral cancer, mainly because of treatment failure. Indeed, tumour recurrence is inevitable and fatal in a short period of time. Glioblastoma stem-like cells (GSCs) are thought to participate in tumour initiation, expansion, resistance to treatments, including to the alkylating chemotherapeutic agent temozolomide, and relapse. Here, we assessed whether extracellular vesicles (EVs) released by GSCs could disseminate factors involved in resistance mechanisms. We first characterized EVs either circulating in peripheral blood from newly diagnosed patients or released by patient-derived temozolomide-resistant GSCs. We found that EVs from both sources were mainly composed of particles homogeneous in size (50-100 nm), while they were more abundant in liquid biopsies from GBM patients, as compared to healthy donors. Further, mass spectrometry analysis from GSC-derived EVs unveiled that particles from control and temozolomide-treated cells share core components of EVs, as well as ribosome- and proteasome-associated networks. More strikingly, temozolomide treatment led to the enrichment of EVs with cargoes dedicated to cell adhesion processes. Thus, while relatively inefficient in killing GSCs in vitro, temozolomide could instead increase the release of pro-tumoral information. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Temozolomide-treated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Adj. k-factor
255.8 (pelleting) / 255.8 (washing)
Protein markers
EV: Alix/ HSP70
non-EV: TOM20
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary glioblastoma cells
EV-harvesting Medium
Serum free medium
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
255.8
Wash: time (min)
120
Wash: Rotor Type
SW 41 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
255.8
Characterization: Protein analysis
Protein Concentration Method
Not determined
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix, HSP70
Not detected contaminants
TOM20
Proteomics database
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
TRPS
Report type
Mean
Reported size (nm)
90
EV concentration
Yes
151 - 200 of 829 keyboard_arrow_leftkeyboard_arrow_right