Search > Results

You searched for: 2013 (Year of publication)

Showing 101 - 150 of 384

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method/Vesicle type
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type/Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type/Isolation method
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV130132 1/1 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Atai NA 2013 29%

Study summary

Full title
All authors
Atai NA, Balaj L, van Veen H, Breakefield XO, Jarzyna PA, Van Noorden CJ, Skog J, Maguire CA
Journal
J Neurooncol
Abstract
Extracellular vesicles (EVs) have been implicated in tumorigenesis. Biomolecules which can block EV (show more...)Extracellular vesicles (EVs) have been implicated in tumorigenesis. Biomolecules which can block EV binding and uptake into recipient cells may be of therapeutic value as well as enhance understanding of EV biology. Here, we show that heparin interacts with uptake of tumor-derived as well as non-tumor-derived EVs into recipient cells. Incubation of glioma cell-derived EVs with heparin resulted in micron-sized structures observed by transmission electron microscopy, with EVs clearly visible within these structures. Inclusion of heparin greatly diminished transfer of labeled EVs from donor to recipient tumor cells. We also show a direct interaction between heparin and EVs using confocal microscopy. We found that the block in EV uptake was at the level of cell binding and not internalization. Finally, incubation of glioma-derived EVs containing EGFRvIII mRNA with heparin reduced transfer of this message to recipient cells. The effect of heparin on EVs uptake may provide a unique tool to study EV function. It may also foster research of heparin or its derivatives as a therapeutic for disease in which EVs play a role. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
156.9 (pelleting) / 115.4 (washing)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
80
Pelleting: rotor type
70Ti
Pelleting: adjusted k-factor
156.9
Wash: volume per pellet (ml)
12
Wash: Rotor Type
MLA55
Wash: adjusted k-factor
115.4
Filtration steps
> 0.45 µm,
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV130124 1/1 Rattus norvegicus/rattus Cell culture supernatant (d)(U)C
Filtration
Tian T 2013 29%

Study summary

Full title
All authors
Tian T, Zhu YL, Hu FH, Wang YY, Huang NP, Xiao ZD
Journal
J Cell Physiol
Abstract
Cells release exosomes into extracellular medium. Although the important roles of exosomes in many p (show more...)Cells release exosomes into extracellular medium. Although the important roles of exosomes in many physiological and pathological processes are being revealed, the mechanism of exosome-cell interaction remains unclear. In this article, employing real-time fluorescence microscopy, the motion of exosomes on the plasma membrane or in the cytoplasm of recipient PC12 cells was observed directly. In addition, several motion modes of exosomes were revealed by single particle tracking (SPT). The changes between motion modes were also detected, presenting the dynamic courses of exosome attachment onto plasma membrane and exosome uptake. Octadecyl rhodamine B chloride (R18) was found to be useful to distinguish endocytosis from fusion during exosome uptake. Colocalization with organelle markers showed exosomes were sorted to acidic vesicles after internalization. The results provide new sight into the exosome-cell interaction mode and the intercellular trafficking of exosomes. This study will help to understand the roles of exosomes at cell level. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
78.45 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
TEM measurements
40-70
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
70Ti
Pelleting: adjusted k-factor
78.45
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130227 1/1 Homo sapiens Cell culture supernatant (d)(U)C Ramakrishnaiah V 2013 29%

Study summary

Full title
All authors
Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, Willemsen R, Demmers JA, Stalin Raj V, Jenster G, Kwekkeboom J, Tilanus HW, Haagmans BL, Baumert TF, van der Laan LJ
Journal
Proc Natl Acad Sci U S A
Abstract
Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicl (show more...)Recent evidence indicates there is a role for small membrane vesicles, including exosomes, as vehicles for intercellular communication. Exosomes secreted by most cell types can mediate transfer of proteins, mRNAs, and microRNAs, but their role in the transmission of infectious agents is less established. Recent studies have shown that hepatocyte-derived exosomes containing hepatitis C virus (HCV) RNA can activate innate immune cells, but the role of exosomes in the transmission of HCV between hepatocytes remains unknown. In this study, we investigated whether exosomes transfer HCV in the presence of neutralizing antibodies. Purified exosomes isolated from HCV-infected human hepatoma Huh7.5.1 cells were shown to contain full-length viral RNA, viral protein, and particles, as determined by RT-PCR, mass spectrometry, and transmission electron microscopy. Exosomes from HCV-infected cells were capable of transmitting infection to naive human hepatoma Huh7.5.1 cells and establishing a productive infection. Even with subgenomic replicons, lacking structural viral proteins, exosome-mediated transmission of HCV RNA was observed. Treatment with patient-derived IgGs showed a variable degree of neutralization of exosome-mediated infection compared with free virus. In conclusion, this study showed that hepatic exosomes can transmit productive HCV infection in vitro and are partially resistant to antibody neutralization. This discovery sheds light on neutralizing antibodies resistant to HCV transmission by exosomes as a potential immune evasion mechanism. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
396.8 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
110
Pelleting: rotor type
SW28
Pelleting: adjusted k-factor
396.8
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130098 1/1 Homo sapiens Cell culture supernatant (d)(U)C Li CC 2013 29%

Study summary

Full title
All authors
Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, Brammah S, Buckland ME, Suter CM
Journal
RNA Biol
Abstract
Interactions between glioma cells and their local environment are critical determinants of brain tum (show more...)Interactions between glioma cells and their local environment are critical determinants of brain tumor growth, infiltration and neovascularisation. Communication with host cells and stroma via microvesicles represents one pathway by which tumors can modify their surroundings to achieve a tumor-permissive environment. Here we have taken an unbiased approach to identifying RNAs in glioma-derived microvesicles, and explored their potential to regulate gene expression in recipient cells. We find that glioma microvesicles are predominantly of exosomal origin and contain complex populations of coding and noncoding RNAs in proportions that are distinct from those in the cells from which they are derived. Microvesicles show a relative depletion in microRNA compared with their cells of origin, and are enriched in unusual or novel noncoding RNAs, most of which have no known function. Short-term exposure of brain microvascular endothelial cells to glioma microvesicles results in many gene expression changes in the endothelial cells, most of which cannot be explained by direct delivery of transcripts. Our data suggest that the scope of potential actions of tumor-derived microvesicles is much broader and more complex than previously supposed, and highlight a number of new classes of small RNA that remain to be characterized. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
yes
TEM measurements
100-110
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
45
Wash: volume per pellet (ml)
0.5
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130145 4/4 Mus musculus Cell culture supernatant (d)(U)C
Filtration
Lau C 2013 29%

Study summary

Full title
All authors
Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, Wei F, Lin YL, Moro A, Grogan T, Chiang S, Feinstein E, Schafer C, Farrell J, Wong DT
Journal
J Biol Chem
Abstract
Recent studies have demonstrated that discriminatory salivary biomarkers can be readily detected upo (show more...)Recent studies have demonstrated that discriminatory salivary biomarkers can be readily detected upon the development of systemic diseases such as pancreatic cancer, breast cancer, lung cancer, and ovarian cancer. However, the utility of salivary biomarkers for the detection of systemic diseases has been undermined due to the absence of the biological and mechanistic rationale as to why distal diseases from the oral cavity would lead to the development of discriminatory biomarkers in saliva. Here, we examine the hypothesis that pancreatic tumor-derived exosomes are mechanistically involved in the development of pancreatic cancer-discriminatory salivary transcriptomic biomarkers. We first developed a pancreatic cancer mouse model that yielded discriminatory salivary biomarkers by implanting the mouse pancreatic cancer cell line Panc02 into the pancreas of the syngeneic host C57BL/6. The role of pancreatic cancer-derived exosomes in the development of discriminatory salivary biomarkers was then tested by engineering a Panc02 cell line that is suppressed for exosome biogenesis, implanting into the C56BL/6 mouse, and examining whether the discriminatory salivary biomarker profile was ablated or disrupted. Suppression of exosome biogenesis results in the ablation of discriminatory salivary biomarker development. This study supports that tumor-derived exosomes provide a mechanism in the development of discriminatory biomarkers in saliva and distal systemic diseases. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
EV130070 2/2 Homo sapiens Cell culture supernatant (d)(U)C Ismail N 2013 29%

Study summary

Full title
All authors
Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K, Batte K, Shah P, Wisler J, Eubank TD, Tridandapani S, Paulaitis ME, Piper MG, Marsh CB
Journal
Blood
Abstract
Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellul (show more...)Microvesicles are small membrane-bound particles comprised of exosomes and various-sized extracellular vesicles. These are released by several cell types. Microvesicles have a variety of cellular functions from communication to mediating growth and differentiation. Microvesicles contain proteins and nucleic acids. Previously, we showed that plasma microvesicles contain microRNAs (miRNAs). Based on our previous report, the majority of peripheral blood microvesicles are derived from platelets, while mononuclear phagocytes, including macrophages, are the second most abundant population. Here, we characterized macrophage-derived microvesicles and explored their role in the differentiation of naive monocytes. We also identified the miRNA content of the macrophage-derived microvesicles. We found that RNA molecules contained in the macrophage-derived microvesicles were transported to target cells, including mono cytes, endothelial cells, epithelial cells, and fibroblasts. Furthermore, we found that miR-223 was transported to target cells and was functionally active. Based on our observations, we hypothesize that microvesicles bind to and activate target cells. Furthermore, we find that microvesicles induce the differentiation of macrophages. Thus, defining key components of this response may identify novel targets to regulate host defense and inflammation. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
DLS
EM
EM-type
cryo EM
Image type
Close-up, Wide-field
EV130191 1/1 Homo sapiens Cell culture supernatant (d)(U)C Haqqani AS 2013 29%

Study summary

Full title
All authors
Haqqani AS, Delaney CE, Tremblay TL, Sodja C, Sandhu JK, Stanimirovic DB
Journal
Fluids Barriers CNS
Abstract
BACKGROUND: In addition to possessing intracellular vesicles, eukaryotic cells also produce extracel (show more...)BACKGROUND: In addition to possessing intracellular vesicles, eukaryotic cells also produce extracellular microvesicles, ranging from 50 to 1000 nm in diameter that are released or shed into the microenvironment under physiological and pathological conditions. These membranous extracellular organelles include both exosomes (originating from internal vesicles of endosomes) and ectosomes (originating from direct budding/shedding of plasma membranes). Extracellular microvesicles contain cell-specific collections of proteins, glycoproteins, lipids, nucleic acids and other molecules. These vesicles play important roles in intercellular communication by acting as carrier for essential cell-specific information to target cells. Endothelial cells in the brain form the blood-brain barrier, a specialized interface between the blood and the brain that tightly controls traffic of nutrients and macromolecules between two compartments and interacts closely with other cells forming the neurovascular unit. Therefore, brain endothelial cell extracellular microvesicles could potentially play important roles in externalizing brain-specific biomarkers into the blood stream during pathological conditions, in transcytosis of blood-borne molecules into the brain, and in cell-cell communication within the neurovascular unit. METHODS: To study cell-specific molecular make-up and functions of brain endothelial cell exosomes, methods for isolation of extracellular microvesicles using mass spectrometry-compatible protocols and the characterization of their signature profiles using mass spectrometry -based proteomics were developed. RESULTS: A total of 1179 proteins were identified in the isolated extracellular microvesicles from brain endothelial cells. The microvesicles were validated by identification of almost 60 known markers, including Alix, TSG101 and the tetraspanin proteins CD81 and CD9. The surface proteins on isolated microvesicles could potentially interact with both primary astrocytes and cortical neurons, as cell-cell communication vesicles. Finally, brain endothelial cell extracellular microvesicles were shown to contain several receptors previously shown to carry macromolecules across the blood brain barrier, including transferrin receptor, insulin receptor, LRPs, LDL and TMEM30A. CONCLUSIONS: The methods described here permit identification of the molecular signatures for brain endothelial cell-specific extracellular microvesicles under various biological conditions. In addition to being a potential source of useful biomarkers, these vesicles contain potentially novel receptors known for delivering molecules across the blood-brain barrier. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
159.6 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Pelleting: rotor type
60Ti
Pelleting: adjusted k-factor
159.6
Characterization: Protein analysis
Characterization: Particle analysis
EV130026 3/3 Homo sapiens Urine DG
(d)(U)C
Gerlach JQ 2013 29%

Study summary

Full title
All authors
Gerlach JQ, Krüger A, Gallogly S, Hanley SA, Hogan MC, Ward CJ, Joshi L, Griffin MD
Journal
PLoS One
Abstract
Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomo (show more...)Urinary extracellular vesicles (uEVs) are released by cells throughout the nephron and contain biomolecules from their cells of origin. Although uEV-associated proteins and RNA have been studied in detail, little information exists regarding uEV glycosylation characteristics. Surface glycosylation profiling by flow cytometry and lectin microarray was applied to uEVs enriched from urine of healthy adults by ultracentrifugation and centrifugal filtration. The carbohydrate specificity of lectin microarray profiles was confirmed by competitive sugar inhibition and carbohydrate-specific enzyme hydrolysis. Glycosylation profiles of uEVs and purified Tamm Horsfall protein were compared. In both flow cytometry and lectin microarray assays, uEVs demonstrated surface binding, at low to moderate intensities, of a broad range of lectins whether prepared by ultracentrifugation or centrifugal filtration. In general, ultracentrifugation-prepared uEVs demonstrated higher lectin binding intensities than centrifugal filtration-prepared uEVs consistent with lesser amounts of co-purified non-vesicular proteins. The surface glycosylation profiles of uEVs showed little inter-individual variation and were distinct from those of Tamm Horsfall protein, which bound a limited number of lectins. In a pilot study, lectin microarray was used to compare uEVs from individuals with autosomal dominant polycystic kidney disease to those of age-matched controls. The lectin microarray profiles of polycystic kidney disease and healthy uEVs showed differences in binding intensity of 6/43 lectins. Our results reveal a complex surface glycosylation profile of uEVs that is accessible to lectin-based analysis following multiple uEV enrichment techniques, is distinct from co-purified Tamm Horsfall protein and may demonstrate disease-specific modifications. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Adj. k-factor
242.1 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Surespin630
Pelleting: adjusted k-factor
242.1
Density gradient
Density medium
Sucrose
Lowest density fraction
5
Highest density fraction
30
Rotor type
Surespin630
Speed (g)
120000
Characterization: Particle analysis
EV130074 3/3 Homo sapiens
Mus musculus
Cell culture supernatant (d)(U)C
Filtration
Crescitelli R 2013 29%

Study summary

Full title
All authors
Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, Dianzani I, Buzás EI, Lötvall J
Journal
J Extracell Vesicles
Abstract
INTRODUCTION: In recent years, there has been an exponential increase in the number of studies aimin (show more...)INTRODUCTION: In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. METHOD: EVS RELEASED FROM THREE DIFFERENT KINDS OF CELL LINES: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer(®). RESULTS: RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. CONCLUSIONS: Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes / microvesicles / extracellular vesicles / "Apo
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV: CD81/ CD63/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens / Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Flow cytometry specific beads
Selected surface protein(s)
Yes
Characterization: Particle analysis
Particle analysis: flow cytometry
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
EV130083 1/1 Homo sapiens Urine DG
(d)(U)C
Chen CY 2013 29%

Study summary

Full title
All authors
Chen CY, Hogan MC, Ward CJ
Journal
Methods Enzymol
Abstract
Urinary exosome-like vesicles (ELVs), 20-200nm membrane-bound particles shed by renal epithelium, ha (show more...)Urinary exosome-like vesicles (ELVs), 20-200nm membrane-bound particles shed by renal epithelium, have been shown to interact with the primary cilia of distant epithelial cells of the nephron. These ELVs are emerging as an important source of protein, mRNA, and miRNA biomarkers to monitor renal disease. However, purification of ELVs is compromised by the presence of large amounts of the urinary protein Tamm-Horsfall Protein (THP). THP molecules oligomerize into long, double-helical strands several microns long. These linear assemblies form a three-dimensional gel which traps and sequesters ELVs in any centrifugation-based protocol. Here, we present a purification protocol that separates ELVs from THP and divides urinary ELVs into three distinct populations. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
Exosome-like vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Adj. k-factor
89.98 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
T647.5
Pelleting: adjusted k-factor
89.98
Density gradient
Density medium
Sucrose
Lowest density fraction
5
Highest density fraction
30
Orientation
Top-down
Rotor type
Surespin630
Speed (g)
167000
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130167 1/1 Homo sapiens Cell culture supernatant (d)(U)C Biasutto L 2013 29%

Study summary

Full title
All authors
Biasutto L, Chiechi A, Couch R, Liotta LA, Espina V
Journal
Exp Cell Res
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss and blindness among the eld (show more...)Age-related macular degeneration (AMD) is a leading cause of vision loss and blindness among the elderly population in the industrialized world. One of the typical features of this pathology is the gradual death of retinal pigment epithelial (RPE) cells, which are essential for maintaining photoreceptor functions and survival. The etiology is multifactorial, and oxidative stress is clearly one of the key factors involved in disease pathogenesis (Plafker, Adv. Exp. Med. Biol. 664 (2010) 447-56; Qin, Drug Dev. Res. 68 (2007) 213-225). Recent work has revealed the presence of phosphorylated signaling proteins in the vitreous humour of patients affected by AMD or other retinal diseases. While the location of these signaling proteins is typically the cell membrane or intracellular compartments, vitreous samples were proven to be cell-free (Davuluri et al., Arch. Ophthalmol. 127 (2009) 613-21). To gain a better understanding of how these proteins can be shed into the vitreous, we used reverse phase protein arrays (RPMA) to analyze the protein and phosphoprotein content of exosomes shed by cultured ARPE-19 cells under oxidative stress conditions. Seventy two proteins were shown to be released by ARPE-19 cells and compartmentalized within exosomes. Forty one of them were selectively detected in their post-translationally modified form (i.e., phosphorylated or cleaved) for the first time in exosomes. Sets of these proteins were linked together reflecting activation of pathway units within exosomes. A subset of (phospho)proteins were altered in exosomes secreted by ARPE-19 cells subjected to oxidative stress, compared to that secreted by control/non stressed cells. Stress-altered exosome proteins were found to be involved in pathways regulating apoptosis/survival (i.e, Bak, Smac/Diablo, PDK1 (S241), Akt (T308), Src (Y416), Elk1 (S383), ERK 1/2 (T202/Y204)) and cell metabolism (i.e., AMPK?1 (S485), acetyl-CoA carboxylase (S79), LDHA). Exosomes may thus represent the conduit through which membrane and intracellular signaling proteins are released into the vitreous. Changes in their (phospho)protein content upon stress conditions suggest their possible role in mediating cell-cell signaling during physio-pathological events; furthermore, exosomes may represent a potential source of biomarkers. (hide)
EV-METRIC
29% (55th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
253.9 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW28
Pelleting: adjusted k-factor
253.9
Characterization: Protein analysis
Characterization: Particle analysis
EM
EM-type
atomic force EM
Image type
Wide-field
EV130064 1/1 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Meckes DG Jr 2013 25%

Study summary

Full title
All authors
Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N
Journal
Proc Natl Acad Sci U S A
Abstract
The human gamma herpesviruses, Kaposi sarcoma-associated virus (KSHV) and EBV, are associated with m (show more...)The human gamma herpesviruses, Kaposi sarcoma-associated virus (KSHV) and EBV, are associated with multiple cancers. Recent evidence suggests that EBV and possibly other viruses can manipulate the tumor microenvironment through the secretion of specific viral and cellular components into exosomes, small endocytically derived vesicles that are released from cells. Exosomes produced by EBV-infected nasopharyngeal carcinoma cells contain high levels of the viral oncogene latent membrane protein 1 and viral microRNAs that activate critical signaling pathways in recipient cells. In this study, to determine the effects of EBV and KSHV on exosome content, quantitative proteomics techniques were performed on exosomes purified from 11 B-cell lines that are uninfected, infected with EBV or with KSHV, or infected with both viruses. Using mass spectrometry, 871 proteins were identified, of which ?360 were unique to the viral exosomes. Analysis by 2D difference gel electrophoresis and spectral counting identified multiple significant changes compared with the uninfected control cells and between viral groups. These data predict that both EBV and KSHV exosomes likely modulate cell death and survival, ribosome function, protein synthesis, and mammalian target of rapamycin signaling. Distinct viral-specific effects on exosomes suggest that KSHV exosomes would affect cellular metabolism, whereas EBV exosomes would activate cellular signaling mediated through integrins, actin, IFN, and NF?B. The changes in exosome content identified in this study suggest ways that these oncogenic viruses modulate the tumor microenvironment and may provide diagnostic markers specific for EBV and KSHV associated malignancies. (hide)
EV-METRIC
25% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV: TSG101/ Ezrin/ CD63/ LAMP2/ LAMP1/ Flotillin2
non-EV:
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ TSG101/ Flotillin2/ LAMP1/ LAMP2/ Ezrin
ELISA
Detected EV-associated proteins
Flotillin2/ LAMP1/ LAMP2/ Ezrin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130072 3/4 Homo sapiens Cell culture supernatant (d)(U)C
Total Exosome Isolation
Zeringer E 2013 25%

Study summary

Full title
All authors
Zeringer E, Li M, Barta T, Schageman J, Pedersen KW, Neurauter A, Magdaleno S, Setterquist R, Vlassov AV
Journal
World J Methodol
Abstract
AIM: To develop protocols for isolation of exosomes and characterization of their RNA content. METHO (show more...)AIM: To develop protocols for isolation of exosomes and characterization of their RNA content. METHODS: Exosomes were extracted from HeLa cell culture media and human blood serum using the Total exosome isolation (from cell culture media) reagent, and Total exosome isolation (from serum) reagent respectively. Identity and purity of the exosomes was confirmed by Nanosight(®) analysis, electron microscopy, and Western blots for CD63 marker. Exosomal RNA cargo was recovered with the Total exosome RNA and protein isolation kit. Finally, RNA was profiled using Bioanalyzer and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) methodology. RESULTS: Here we describe a novel approach for robust and scalable isolation of exosomes from cell culture media and serum, with subsequent isolation and analysis of RNA residing within these vesicles. The isolation procedure is completed in a fraction of the time, compared to the current standard protocols utilizing ultracentrifugation, and allows to recover fully intact exosomes in higher yields. Exosomes were found to contain a very diverse RNA cargo, primarily short sequences 20-200 nt (such as miRNA and fragments of mRNA), however longer RNA species were detected as well, including full-length 18S and 28S rRNA. CONCLUSION: We have successfully developed a set of reagents and a workflow allowing fast and efficient extraction of exosomes, followed by isolation of RNA and its analysis by qRT-PCR and other techniques. (hide)
EV-METRIC
25% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Total Exosome Isolation
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Commercial kit
Total Exosome Isolation
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM/ immune EM
Proteïns
CD63;CD81
Image type
Close-up
EV130062 1/1 Mus musculus Cell culture supernatant (d)(U)C Yu L 2013 25%

Study summary

Full title
All authors
Yu L, Yang F, Jiang L, Chen Y, Wang K, Xu F, Wei Y, Cao X, Wang J, Cai Z
Journal
Eur J Immunol
Abstract
We have previously demonstrated that exosomes from dendritic cells (DCs) secreting TGF-?1 (sTGF-?1-E (show more...)We have previously demonstrated that exosomes from dendritic cells (DCs) secreting TGF-?1 (sTGF-?1-EXOs) delay the development of murine inflammatory bowel disease (IBD). In this study, we isolated exosomes from DCs expressing membrane-associated TGF-?1 (mTGF-?1-EXOs) and found mTGF-?1-EXOs had more potent immunosuppressive activity than sTGF-?1-EXOs in vitro. Treatment of mice with mTGF-?1-EXOs inhibited the development and progression of myelin oligodendrocyte glycoprotein (MOG) peptide-induced EAE even after disease onset. Treatment of mice with mTGF-?1-EXOs also impaired Ag-specific Th1 and IL-17 responses, but promoted IL-10 responses ex vivo. Treatment with mTGF-?1-EXOs decreased the frequency of Th17 cells in EAE mice, which might be associated with the down-regulation of the p38, ERK, Stat3, and NF-?B activation and IL-6 expression in DCs. Treatment with mTGF-?1-EXOs maintained the regulatory capacity of Treg cells, and adoptive transfer of CD4(+)Foxp3(+)Treg cells from mTGF-?1-EXO-treated EAE mice dramatically prevented the development of EAE in the recipients. Moreover, treatment with mTGF-?1-EXOs from C57BL/6 mice effectively prevented and inhibited proteolipid protein (PLP) peptide-induced EAE in BALB/c mice. These results indicate that mTGF-?1-EXOs possess powerful immunosuppressive ability and can effectively inhibit the development and progression of EAE in different strains of mice. (hide)
EV-METRIC
25% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: TSG101/ HSP70/ CD63/ CD9
non-EV: TGF-beta1/ CD80/ Cell organelle protein/ CD86/ MHC2/ CD11c
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
EM
EM-type
transmission EM
EV130056 2/2 Bos bovis Follicular fluid (d)(U)C
ExoQuick
Filtration
Sohel MM 2013 25%

Study summary

Full title
All authors
Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, Rings F, Uddin MJ, Spencer TE, Schellander K, Tesfaye D
Journal
PLoS One
Abstract
Cell-cell communication within the follicle involves many signaling molecules, and this process may (show more...)Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment. (hide)
EV-METRIC
25% (58th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Follicular fluid
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + ExoQuick + Filtration
Protein markers
EV: CD63
non-EV: Cell organelle protein/ Ago2
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Bos bovis
Sample Type
Follicular fluid
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63
Detected contaminants
Cell organelle protein/ Ago2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130230 1/1 Homo sapiens Semen (d)(U)C Ronquist KG 2013 25%

Study summary

Full title
All authors
Ronquist KG, Ek B, Stavreus-Evers A, Larsson A, Ronquist G
Journal
Am J Physiol Endocrinol Metab
Abstract
Prostasomes are prostate-derived, exosome-like microvesicles that transmit signaling complexes betwe (show more...)Prostasomes are prostate-derived, exosome-like microvesicles that transmit signaling complexes between the acinar epithelial cells of the prostate and sperm cells. The vast majority of prostasomes have a diameter of 30-200 nm, and they are generally surrounded by a classical membrane bilayer. Using a selected proteomic approach, it became increasingly clear that prostasomes harbor distinct subsets of proteins that may be linked to adenosine triphosphate (ATP) metabolic turnover that in turn might be of importance in the role of prostasomes as auxiliary instruments in the fertilization process. Among the 21 proteins identified, most of the enzymes of anaerobic glycolysis were represented, and three of the glycolytic enzymes present are among the top 10 proteins found in most exosomes, once again linking prostasomes to the exosome family. Other prostasomal enzymes involved in ATP turnover were adenylate kinase, ATPase, 5'-nucleotidase, and hexose transporters. The identified enzymes in their prostasomal context were operational for ATP formation when supplied with substrates. The net ATP production was low due to a high prostasomal ATPase activity that could be partially inhibited by vanadate that was utilized to profile the ATP-forming ability of prostasomes. Glucose and fructose were equivalent as glycolytic substrates for prostasomal ATP formation, and the enzymes involved were apparently surface located on prostasomes, since an alternative substrate not being membrane permeable (glyceraldehyde 3-phosphate) was operative, too. There is no clear-cut function linked to this subset of prostasomal proteins, but some possible roles are discussed. (hide)
EV-METRIC
25% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Semen
Sample origin
DNF
Focus vesicles
Prostasomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
126 (pelleting)
Protein markers
EV:
non-EV:
Proteomics
yes
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Semen
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
90Ti
Pelleting: adjusted k-factor
126.0
Characterization: Protein analysis
Characterization: Particle analysis
EV130146 1/2 Homo sapiens Cell culture supernatant (d)(U)C Miller IV 2013 25%

Study summary

Full title
All authors
Miller IV, Raposo G, Welsch U, Prazeres da Costa O, Thiel U, Lebar M, Maurer M, Bender HU, von Luettichau I, Richter GH, Burdach S, Grunewald TG
Journal
Biol Cell
Abstract
BACKGROUND INFORMATION: Exosomes are small RNA- and protein-containing extracellular vesicles (EVs) (show more...)BACKGROUND INFORMATION: Exosomes are small RNA- and protein-containing extracellular vesicles (EVs) that are thought to mediate hetero- and homotypic intercellular communication between normal and malignant cells.Tumour-derived exosomes are believed to promote re-programming of the tumour-associated stroma to favour tumour growth and metastasis. Currently, exosomes have been intensively studied in carcinomas. However, little is known about their existence and possible role in sarcomas. RESULTS: Here, we report on the identification of vesicles with exosomal features derived from Ewing's sarcoma(ES), the second most common soft-tissue or bone cancer in children and adolescents. ES cell line-derived EV shave been isolated by ultracentrifugation and analysed by flow-cytometric assessment of the exosome-associated proteins CD63 and CD81 as well as by electron microscopy. They proved to contain ES-specific transcripts including EWS-FLI1, which were suitable for the sensitive detection of ES cell line-derived exosomes by qRT-PCRin a pre-clinical model for patient plasma. Microarray analysis of ES cell line-derived exosomes revealed that they share a common transcriptional signature potentially involved in G-protein-coupled signalling, neurotransmitter signalling and stemness. CONCLUSIONS: In summary, our results imply that ES-derived exosomes could eventually serve as biomarkers for minimal residual disease diagnostics in peripheral blood and prompt further investigation of their potential biological role in modification of the ES-associated microenvironment (hide)
EV-METRIC
25% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
122.2 (pelleting) / 122.2 (washing)
Protein markers
EV: CD81/ CD63
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
70.1Ti
Pelleting: adjusted k-factor
122.2
Wash: Rotor Type
70.1Ti
Wash: adjusted k-factor
122.2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130094 1/1 Mus musculus Cell culture supernatant ExoQuick Jang JY 2013 25%

Study summary

Full title
All authors
Jang JY, Lee JK, Jeon YK, Kim CW
Journal
BMC Cancer
Abstract
BACKGROUND: Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Par (show more...)BACKGROUND: Tumor-associated macrophages (TAM) play an important role in tumor microenvironment. Particularly, M2 macrophages contribute to tumor progression, depending on the expression of NF-?B. Tumor-derived exosomes can modulate tumor microenvironment by transferring miRNAs to immune cells. Epigallocatechin gallate (EGCG) has well known anti-tumor effects; however, no data are available on the influence of EGCG on communication with cancer cells and TAM. METHODS: Murine breast cancer cell lines, 4T1, was used for in vivo and ex vivo studies. Exosome was extracted from EGCG-treated 4T1 cells, and the change of miRNAs was screened using microarray. Tumor cells or TAM isolated from murine tumor graft were incubated with exosomes derived from EGCG-treated and/or miR-16 inhibitor-transfected 4T1 cells. Chemokines for monocytes (CSF-1 and CCL-2), cytokines both with high (IL-6 and TGF-?) and low (TNF-?) expression in M2 macrophages, and molecules in NF-?B pathway (IKK? and I?-B) were evaluated by RT-qPCR or western blot. RESULTS: EGCG suppressed tumor growth in murine breast cancer model, which was associated with decreased TAM and M2 macrophage infiltration. Expression of chemokine for monocytes (CSF-1 and CCL-2) were low in tumor cells from EGCG-treated mice, and cytokines of TAM was skewed from M2- into M1-like phenotype by EGCG as evidenced by decreased IL-6 and TGF-? and increased TNF-?. Ex vivo incubation of isolated tumor cells with EGCG inhibited the CSF-1 and CCL-2 expression. Ex vivo incubation of TAM with exosomes from EGCG-treated 4T1 cells led to IKK? suppression and concomitant I-?B accumulation; increase of IL-6 and TGF-?; and, decrease of TNF-?. EGCG up-regulated miR-16 in 4T1 cells and in the exosomes. Treatment of tumor cells or TAM with exosomes derived from EGCG-treated and miR-16-knock-downed 4T1 cells restored the above effects on chemokines, cytokines, and NF-?B pathway elicited by EGCG-treated exosomes. CONCLUSIONS: Our data demonstrate that EGCG up-regulates miR-16 in tumor cells, which can be transferred to TAM via exosomes and inhibits TAM infiltration and M2 polarization. We suggest a novel mechanism by which EGCG exerts anti-tumor activity via regulation of TAM in tumor microenvironment. (hide)
EV-METRIC
25% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
ExoQuick
Protein markers
EV: Beta-actin
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Commercial kit
ExoQuick
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Beta-actin
ELISA
Detected EV-associated proteins
Beta-actin
Characterization: Particle analysis
EV130086 3/5 Homo sapiens Pleural fluid (d)(U)C
ExoQuick
Filtration
Chugh PE 2013 25%

Study summary

Full title
All authors
Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP
Journal
PLoS Pathog
Abstract
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Rec (show more...)MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi's sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17-92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS. (hide)
EV-METRIC
25% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Pleural fluid
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + ExoQuick + Filtration
Protein markers
EV: HSP90beta/ Beta-actin/ HSP90alpha/ Flotillin2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Pleural fluid
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Filtration steps
0.22µm or 0.2µm
Commercial kit
ExoQuick
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Flotillin2/ HSP90alpha/ HSP90beta/ Beta-actin
ELISA
Detected EV-associated proteins
Flotillin2/ HSP90alpha/ HSP90beta/ Beta-actin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130077 2/2 Homo sapiens Cell culture supernatant DG Abrami L 2013 25%

Study summary

Full title
All authors
Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA, Leppla SH, van der Goot FG
Journal
Cell Rep
Abstract
Anthrax lethal toxin is a classical AB toxin comprised of two components: protective antigen (PA) an (show more...)Anthrax lethal toxin is a classical AB toxin comprised of two components: protective antigen (PA) and lethal factor (LF). Here, we show that following assembly and endocytosis, PA forms a channel that translocates LF, not only into the cytosol, but also into the lumen of endosomal intraluminal vesicles (ILVs). These ILVs can fuse and release LF into the cytosol, where LF can proteolyze and disable host targets. We find that LF can persist in ILVs for days, fully sheltered from proteolytic degradation, both in vitro and in vivo. During this time, ILV-localized LF can be transmitted to daughter cells upon cell division. In addition, LF-containing ILVs can be delivered to the extracellular medium as exosomes. These can deliver LF to the cytosol of naive cells in a manner that is independent of the typical anthrax toxin receptor-mediated trafficking pathway, while being sheltered from neutralizing extracellular factors of the immune system. (hide)
EV-METRIC
25% (51st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG
Protein markers
EV: Alix/ TSG101/ Flotilin1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Density gradient
Density medium
Sucrose
Lowest density fraction
15
Highest density fraction
40
Orientation
Bottom-up
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ Flotilin1/ TSG101
Characterization: Particle analysis
EV130138 1/1 Homo sapiens Blood plasma (d)(U)C Shimizu C 2013 22%

Study summary

Full title
All authors
Shimizu C, Kim J, Stepanowsky P, Trinh C, Lau HD, Akers JC, Chen C, Kanegaye JT, Tremoulet A, Ohno-Machado L, Burns JC
Journal
PLoS One
Abstract
BACKGROUND: Kawasaki disease is an acute, self-limited vasculitis of childhood that can result in st (show more...)BACKGROUND: Kawasaki disease is an acute, self-limited vasculitis of childhood that can result in structural damage to the coronary arteries. Previous studies have implicated the TGF-? pathway in disease pathogenesis and generation of myofibroblasts in the arterial wall. microRNAs are small non-coding RNAs that modulate gene expression at the post-transcriptional level and can be transported between cells in extracellular vesicles. To understand the role that microRNAs play in modifying gene expression in Kawasaki disease, we studied microRNAs from whole blood during the acute and convalescent stages of the illness. METHODOLOGY/PRINCIPAL FINDINGS: RNA isolated from the matched whole blood of 12 patients with acute and convalescent Kawasaki disease were analyzed by sequencing of small RNA. This analysis revealed six microRNAs (miRs-143, -199b-5p, -618, -223, -145 and -145 (hide)
EV-METRIC
22% (47th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
174.8 (pelleting) / 174.8 (washing)
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
45Ti
Pelleting: adjusted k-factor
174.8
Wash: Rotor Type
45Ti
Wash: adjusted k-factor
174.8
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
EV130136 1/1 Homo sapiens Platelet supernatant (d)(U)C Pienimaeki-Roemer A 2013 22%

Study summary

Full title
All authors
Pienimaeki-Roemer A, Ruebsaamen K, Boettcher A, Orsó E, Scherer M, Liebisch G, Kilalic D, Ahrens N, Schmitz G
Journal
Transfusion
Abstract
BACKGROUND: Stored platelet concentrates (PLCs) for transfusion develop a platelet storage lesion (P (show more...)BACKGROUND: Stored platelet concentrates (PLCs) for transfusion develop a platelet storage lesion (PSL), resulting in decreased platelet (PLT) viability and function. The processes leading to PSL have not been described in detail and no data describe molecular changes occurring in all three components of stored PLCs: PLTs, PLC extracellular vesicles (PLC-EVs), and plasma. STUDY DESIGN AND METHODS: Fifty PLCs from healthy individuals were stored under standard blood banking conditions for 5 days. Changes in cholesterol, glycerophospholipid, and sphingolipid species were analyzed in PLTs, PLC-EVs, and plasma by mass spectrometry and metabolic labeling. Immunoblots were performed to compare PLT and PLC-EV protein expression. RESULTS: During 5 days, PLTs transferred glycerophospholipids, cholesterol, and sphingolipids to newly formed PLC-EVs, which increased corresponding lipids by 30%. Stored PLTs significantly increased ceramide (Cer; +53%) and decreased sphingosine-1-phosphate (-53%), shifting sphingolipid metabolism toward Cer. In contrast, plasma accumulated minor sphingolipids. Compared to PLTs, fresh PLC-EVs were enriched in lysophosphatidic acid (60-fold) and during storage showed significant increases in cholesterol, sphingomyelin, dihydrosphingomyelin, plasmalogen, and lysophosphatidylcholine species, as well as accumulation of apolipoproteins A-I, E, and J/clusterin. CONCLUSION: This is the first detailed analysis of lipid species in all PLC components during PLC storage, which might reflect mechanisms active during in vivo PLT senescence. Stored PLTs reduce minor sphingolipids and shift sphingolipid metabolism toward Cer, whereas in the plasma fraction minor sphingolipids increase. The composition of PLC-EVs resembles that of lipid rafts and confirms their role as carriers of bioactive molecules and master regulators in vascular disease. (hide)
EV-METRIC
22% (10th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Platelet supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ Caveolin1/ Annexin5/ CD9/ CD36
non-EV: ApoE/ CD42b/ CD61/ ApoJ/ Cell organelle protein/ P-selectin/ ApoA1
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Platelet supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
45
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD9/ CD36/ Caveolin1/ Annexin5
Detected contaminants
Cell organelle protein/ "P-selectin/ ApoA1/ ApoE/ ApoJ/ CD61/ CD42b"
ELISA
Detected EV-associated proteins
CD36/ Caveolin1/ Annexin5
Characterization: Particle analysis
NTA
EV130258 1/1 Homo sapiens Cell culture supernatant (d)(U)C New SE 2013 22%

Study summary

Full title
All authors
New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, Libby P, Shanahan CM, Croce K, Aikawa E
Journal
Circ Res
Abstract
RATIONALE: We previously showed that early calcification of atherosclerotic plaques associates with (show more...)RATIONALE: We previously showed that early calcification of atherosclerotic plaques associates with macrophage accumulation. Chronic renal disease and mineral imbalance accelerate calcification and the subsequent release of matrix vesicles (MVs), precursors of microcalcification. OBJECTIVE: We tested the hypothesis that macrophage-derived MVs contribute directly to microcalcification. METHODS AND RESULTS: Macrophages associated with regions of calcified vesicular structures in human carotid plaques (n=136 patients). In vitro, macrophages released MVs with high calcification and aggregation potential. MVs expressed exosomal markers (CD9 and TSG101) and contained S100A9 and annexin V. Silencing S100A9 in vitro and genetic deficiency in S100A9-/- mice reduced MV calcification, whereas stimulation with S100A9 increased calcification potential. Externalization of phosphatidylserine after Ca/P stimulation and interaction of S100A9 and annexin V indicated that a phosphatidylserine-annexin V-S100A9 membrane complex facilitates hydroxyapatite nucleation within the macrophage-derived MV membrane. CONCLUSIONS: Our results support the novel concept that macrophages release calcifying MVs enriched in S100A9 and annexin V, which contribute to accelerated microcalcification in chronic renal disease. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Matrix vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: TSG101/ Beta-actin/ CD9
non-EV: S100A9
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
40
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD9/ TSG101/ Beta-actin
Detected contaminants
S100A9
ELISA
Detected EV-associated proteins
Beta-actin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130025 1/2 Salmonella enterica Cell culture supernatant (d)(U)C
Filtration
Guidi R 2013 22%

Study summary

Full title
All authors
Guidi R, Levi L, Rouf SF, Puiac S, Rhen M, Frisan T
Journal
Cell Microbiol
Abstract
Cytolethal-distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are pro (show more...)Cytolethal-distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are produced by several Gram-negative bacteria. Salmonella enterica serovar Typhi expresses its CDT (named as Typhoid toxin) only in the Salmonella-containing vacuole (SCV) of infected cells, which requires its export for cell intoxication. The mechanisms of secretion, release in the extracellular space and uptake by bystander cells are poorly understood. We have addressed these issues using a recombinant S. Typhimurium strain, MC71-CDT, where the genes encoding for the PltA, PltB and CdtB subunits of the Typhoid toxin are expressed under control of the endogenous promoters. MC71-CDT grown under conditions that mimic the SCV secreted the holotoxin in outer membrane vesicles (OMVs). Epithelial cells infected with MC71-CDT also secreted OMVs-like vesicles. The release of these extracellular vesicles required an intact SCV and relied on anterograde transport towards the cellular cortex on microtubule and actin tracks. Paracrine internalization of Typhoid toxin-loaded OMVs by bystander cells was dependent on dynamin-1, indicating active endocytosis. The subsequent induction of DNA damage required retrograde transport of the toxin through the Golgi complex. These data provide new insights on the mode of secretion of exotoxins by cells infected with intracellular bacteria. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
602 (pelleting) / 602 (washing)
Protein markers
EV: MHC1
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Salmonella enterica
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
TH641
Pelleting: adjusted k-factor
602.0
Wash: volume per pellet (ml)
10
Wash: Rotor Type
TH641
Wash: adjusted k-factor
602.0
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
MHC1
Detected contaminants
Cell organelle protein
ELISA
Detected EV-associated proteins
MHC1
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130063 1/1 Homo sapiens Cell culture supernatant (d)(U)C Zheng Y 2013 22%

Study summary

Full title
All authors
Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ
Journal
Exp Cell Res
Abstract
Exosomes are secreted by many cell types and display multiple biological functions. The ability to b (show more...)Exosomes are secreted by many cell types and display multiple biological functions. The ability to both rapidly detect and quantify exosomes in biological samples would assist in the screening of agents that interfere with their release, and which may therefore be of clinical relevance. Nanoparticle tracking analysis, which detects the size and concentration of exosomes, was used to monitor the inhibition of exosome secretion from MDA-MB-231 breast cancer cells expressing inhibitory RNA targeted for Rab27a, a known component of the exosome pathway. Inhibition of both Rab27a and Rab27b was observed, resulting in alterations to intracellular CD63+ compartments and the release of fewer exosomes into the culture medium, as determined by nanoparticle tracking analysis and confirmed by immunoblotting and protein quantification. These data show that nanoparticle tracking analysis can be used effectively and rapidly to monitor the disruption of exosome secretion. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ TSG101/ CD63/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ TSG101/ MHC1
ELISA
Detected EV-associated proteins
MHC1
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Close-up
EV130061 1/1 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Xiao H 2013 22%

Study summary

Full title
All authors
Xiao H, Lässer C, Shelke GV, Wang J, Rådinger M, Lunavat TR, Malmhäll C, Lin LH, Li J, Li L, Lötvall J
Journal
Cell Commun Signal
Abstract
BACKGROUND: Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and spec (show more...)BACKGROUND: Human cells release nano-sized vesicles called exosomes, containing mRNA, miRNA and specific proteins. Exosomes from one cell can be taken up by another cell, which is a recently discovered cell-to-cell communication mechanism. Also, exosomes can be taken up by different types of cancer cells, but the potential functional effects of mast cell exosomes on tumor cells remain unknown. METHODS AND RESULTS: Exosomes were isolated from the human mast cell line, HMC-1, and uptake of PKH67-labelled exosomes by the lung epithelial cell line, A549, was examined using flow cytometry and fluorescence microscopy. The RNA cargo of the exosomes was analyzed with a Bioanalyzer and absence or presence of the c-KIT mRNA was determined by RT-PCR. The cell proliferation was determined in a BrdU incorporation assay, and proteins in the KIT-SCF signaling pathway were detected by Western blot. Our result demonstrates that exosomes from mast cells can be taken up by lung cancer cells. Furthermore, HMC-1 exosomes contain and transfer KIT protein, but not the c-KIT mRNA to A549 cells and subsequently activate KIT-SCF signal transduction, which increase cyclin D1 expression and accelerate the proliferation in the human lung adenocarcinoma cells. CONCLUSIONS: Our results indicate that exosomes can transfer KIT as a protein to tumor cells, which can affect recipient cell signaling events through receptor-ligand interactions. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV: CD81/ TSG101/ c-Kit
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD81/ TSG101/ c-Kit
Detected contaminants
Cell organelle protein
ELISA
Detected EV-associated proteins
c-Kit
Characterization: Particle analysis
EM
EM-type
immune EM
Proteïns
CD63
Image type
Wide-field
EV130060 1/1 Chlamydomonas sporangia Algae DG
(d)(U)C
Wood CR 2013 22%

Study summary

Full title
All authors
Wood CR, Huang K, Diener DR, Rosenbaum JL
Journal
Curr Biol
Abstract
The release of membrane vesicles from the surface of cells into their surrounding environment is now (show more...)The release of membrane vesicles from the surface of cells into their surrounding environment is now recognized as an important pathway for the delivery of proteins to extracellular sites of biological function. Membrane vesicles of this kind, termed exosomes and ectosomes, are the result of active processes and have been shown to carry a wide array of biological effector molecules that can play roles in cell-to-cell communication and remodeling of the extracellular space. Degradation of the extracellular matrix (ECM) through the regulated release of proteolytic enzymes is a key process for development, morphogenesis, and cell migration in animal and plant cells. Here we show that the unicellular alga Chlamydomonas achieves the timely degradation of its mother cell wall, a type of ECM, through the budding of ectosomes directly from the membranes of its flagella. Using a combination of immunoelectron microscopy, immunofluorescence microscopy, and functional analysis, we demonstrate that these vesicles, which we term ciliary ectosomes, act as carriers of the proteolytic enzyme necessary for the liberation of daughter cells following mitosis. Chlamydomonas has proven to be the key unicellular model for the highly conserved mechanisms of mammalian cilia, and our results suggest that cilia may be an underappreciated source of bioactive, extracellular membrane vesicles. (hide)
EV-METRIC
22% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Algae
Sample origin
DNF
Focus vesicles
Ectosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Protein markers
EV: VLE
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Chlamydomonas sporangia
Sample Type
Algae
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
45
Wash: volume per pellet (ml)
2
Density gradient
Only used for validation of main results
1
Density medium
Other
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
VLE
ELISA
Detected EV-associated proteins
VLE
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
Proteïns
VLE
Image type
Close-up, Wide-field
EV130126 1/2 Homo sapiens Cell culture supernatant DG
(d)(U)C
Filtration
Villarroya-Beltri C 2013 22%

Study summary

Full title
All authors
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F
Journal
Nat Commun
Abstract
Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cel (show more...)Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes remain unknown. Here we describe sequence motifs present in miRNAs that control their localization into exosomes. The protein heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1) specifically binds exosomal miRNAs through the recognition of these motifs and controls their loading into exosomes. Moreover, hnRNPA2B1 in exosomes is sumoylated, and sumoylation controls the binding of hnRNPA2B1 to miRNAs. The loading of miRNAs into exosomes can be modulated by mutagenesis of the identified motifs or changes in hnRNPA2B1 expression levels. These findings identify hnRNPA2B1 as a key player in miRNA sorting into exosomes and provide potential tools for the packaging of selected regulatory RNAs into exosomes and their use in biomedical applications. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C + Filtration
Protein markers
EV: CD81
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
0.4
Highest density fraction
2.5
Orientation
Bottom-up
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD81
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
EM
EM-type
cryo EM
Image type
Close-up
EV130116 1/1 Homo sapiens Cell culture supernatant (d)(U)C Singh VV 2013 22%

Study summary

Full title
All authors
Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, Ansari MA, Paudel N, Chikoti L, Chandran B
Journal
J Virol
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infections of endothelial and B cells are etiological (show more...)Kaposi's sarcoma-associated herpesvirus (KSHV) infections of endothelial and B cells are etiologically linked with Kaposi's sarcoma (KS) and primary effusion B-cell lymphoma (PEL), respectively. KS endothelial and PEL B cells carry multiple copies of the nuclear episomal latent KSHV genome and secrete a variety of inflammatory cytokines, including interleukin-1? (IL-1?) and IL-18. The maturation of IL-1? and IL-18 depends upon active caspase-1, which is regulated by a multiprotein inflammasome complex induced by sensing of danger signals. During primary KSHV infection of endothelial cells, acting as a nuclear pattern recognition receptor, gamma interferon-inducible protein 16 (IFI16) colocalized with the KSHV genome in the nuclei and interacted with ASC and procaspase-1 to form a functional inflammasome (Kerur N et al., Cell Host Microbe 9:363-375, 2011). Here, we demonstrate that endothelial telomerase-immortalized human umbilical cells (TIVE) supporting KSHV stable latency (TIVE-LTC cells) and PEL (cavity-based B-cell lymphoma 1 [BCBL-1]) cells show evidence of inflammasome activation, such as the activation of caspase-1 and cleavage of pro-IL-1? and pro-IL-18. Interaction of ASC with IFI16 but not with AIM2 or NOD-like receptor P3 (NLRP3) was detected. The KSHV latency-associated viral FLIP (vFLIP) gene induced the expression of IL-1?, IL-18, and caspase-1 mRNAs in an NF-?B-dependent manner. IFI16 and cleaved IL-1? were detected in the exosomes released from BCBL-1 cells. Exosomal release could be a KSHV-mediated strategy to subvert IL-1? functions. In fluorescent in situ hybridization analyses, IFI16 colocalized with multiple copies of the KSHV genome in BCBL-1 cells. IFI16 colocalization with ASC was also detected in lung PEL sections from patients. Taken together, these findings demonstrated the constant sensing of the latent KSHV genome by IFI16-mediated innate defense and unraveled a potential mechanism of inflammation induction associated with KS and PEL lesions. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ TSG101
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ TSG101
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
EV130112 1/4 Mus musculus Cell culture supernatant (d)(U)C Romancino DP 2013 22%

Study summary

Full title
All authors
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A
Journal
FEBS Lett
Abstract
Several cell types secrete small membranous vesicles that contain cell-specific collections of prote (show more...)Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Beta-enolase/ Alix/ CD63/ HSP70
non-EV: Elongin C/ Bax/ MyHc/ Myogenin/ MyoD/ PARP/ Ozz/ Bcl2
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ HSP70/ Beta-enolase
Detected contaminants
"Elongin C/ MyHc/ Myogenin/ MyoD/ Bcl2/ Bax/ PARP/ Ozz"
ELISA
Detected EV-associated proteins
Beta-enolase
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
Proteïns
Alix
Image type
Close-up
EV130112 2/4 Mus musculus Cell culture supernatant (d)(U)C Romancino DP 2013 22%

Study summary

Full title
All authors
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A
Journal
FEBS Lett
Abstract
Several cell types secrete small membranous vesicles that contain cell-specific collections of prote (show more...)Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Beta-enolase/ Alix/ CD63/ HSP70
non-EV: Elongin C/ Bax/ MyHc/ Myogenin/ MyoD/ PARP/ Ozz/ Bcl2
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ HSP70/ Beta-enolase
Detected contaminants
"Elongin C/ MyHc/ Myogenin/ MyoD/ Bcl2/ Bax/ PARP/ Ozz"
ELISA
Detected EV-associated proteins
Beta-enolase
Characterization: Particle analysis
EV130112 3/4 Mus musculus Cell culture supernatant (d)(U)C Romancino DP 2013 22%

Study summary

Full title
All authors
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A
Journal
FEBS Lett
Abstract
Several cell types secrete small membranous vesicles that contain cell-specific collections of prote (show more...)Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Beta-enolase/ Alix/ CD63/ HSP70
non-EV: Elongin C/ Bax/ MyHc/ Myogenin/ MyoD/ PARP/ Ozz/ Bcl2
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ HSP70/ Beta-enolase
Detected contaminants
"Elongin C/ MyHc/ Myogenin/ MyoD/ Bcl2/ Bax/ PARP/ Ozz"
ELISA
Detected EV-associated proteins
Beta-enolase
Characterization: Particle analysis
EV130112 4/4 Mus musculus Cell culture supernatant (d)(U)C Romancino DP 2013 22%

Study summary

Full title
All authors
Romancino DP, Paterniti G, Campos Y, De Luca A, Di Felice V, d'Azzo A, Bongiovanni A
Journal
FEBS Lett
Abstract
Several cell types secrete small membranous vesicles that contain cell-specific collections of prote (show more...)Several cell types secrete small membranous vesicles that contain cell-specific collections of proteins, lipids, and genetic material. The function of these vesicles is to allow cell-to-cell signaling and the horizontal transfer of their cargo molecules. Here, we demonstrate that muscle cells secrete nano-sized vesicles and that their release increases during muscle differentiation. Analysis of these nanovesicles allowed us to characterize them as exosome-like particles and to define the potential role of the multifunctional protein Alix in their biogenesis. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Beta-enolase/ Alix/ CD63/ HSP70
non-EV: Elongin C/ Bax/ MyHc/ Myogenin/ MyoD/ PARP/ Ozz/ Bcl2
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ HSP70/ Beta-enolase
Detected contaminants
"Elongin C/ MyHc/ Myogenin/ MyoD/ Bcl2/ Bax/ PARP/ Ozz"
ELISA
Detected EV-associated proteins
Beta-enolase
Characterization: Particle analysis
EV130052 1/1 Homo sapiens Urine (d)(U)C Raimondo F 2013 22%

Study summary

Full title
All authors
Raimondo F, Corbetta S, Morosi L, Chinello C, Gianazza E, Castoldi G, Di Gioia C, Bombardi C, Stella A, Battaglia C, Bianchi C, Magni F, Pitto M
Journal
Mol Biosyst
Abstract
Urinary exosomes (UE) are nanovesicles released by every epithelial cell facing the urinary space an (show more...)Urinary exosomes (UE) are nanovesicles released by every epithelial cell facing the urinary space and they are considered a promising source of molecular markers for renal dysfunction and structural injury. Exosomal proteomics has emerged as a powerful tool for understanding the molecular composition of exosomes and has potential to accelerate biomarker discovery. We employed this strategy in the study of diabetic nephropathy (DN) and the consequent end stage renal disease, which represent the dramatic evolution of diabetes, often leading the patients to dialysis or kidney transplantation. The identification of DN biomarkers is likely to help monitoring the disease onset and progression. A label free LC-MS/MS approach was applied to investigate the alteration of the proteome of urinary exosomes isolated from the Zucker diabetic fatty rats (ZDF), as a model of type 2 DN. We collected 24 hour urine samples from 7 ZDF and from 7 control rats at different ages (6, 12 and 20 weeks old) to monitor the development of DN. Exosomes were isolated by ultracentrifugation and their purity assessed by immunoblotting for known exosomal markers. Exosomal proteins from urine samples of 20 week old rats were pooled and analyzed by nLC-ESI-UHR-QToF-MS/MS after pre-filtration and tryptic digestion, leading to the identification and label free quantification of 286 proteins. Subcellular localization and molecular functions were assigned to each protein by UniprotKB, showing that the majority of identified proteins were membrane-associated or cytoplasmic and involved in transport, signalling and cellular adhesion, typical functions of exosomal proteins. We further validated label free mass spectrometry results by immunoblotting, as exemplified by: Xaa-Pro dipeptidase, Major Urinary Protein 1 and Neprilysin, which resulted increased, decreased and not different, respectively, in exosomes isolated from diabetic urine samples compared to controls, by both techniques. In conclusion we show the potential of exosome proteomics for DN biomarker discovery. (hide)
EV-METRIC
22% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ TSG101/ AQP1
non-EV:
Proteomics
yes
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ TSG101/ AQP1
ELISA
Detected EV-associated proteins
AQP1
Characterization: Particle analysis
EV130226 1/1 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Quintero IB 2013 22%

Study summary

Full title
All authors
Quintero IB, Herrala AM, Araujo CL, Pulkka AE, Hautaniemi S, Ovaska K, Pryazhnikov E, Kulesskiy E, Ruuth MK, Soini Y, Sormunen RT, Khirug L, Vihko PT
Journal
PLoS One
Abstract
The molecular mechanisms underlying prostate carcinogenesis are poorly understood. Prostatic acid ph (show more...)The molecular mechanisms underlying prostate carcinogenesis are poorly understood. Prostatic acid phosphatase (PAP), a prostatic epithelial secretion marker, has been linked to prostate cancer since the 1930's. However, the contribution of PAP to the disease remains controversial. We have previously cloned and described two isoforms of this protein, a secretory (sPAP) and a transmembrane type-I (TMPAP). The goal in this work was to understand the physiological function of TMPAP in the prostate. We conducted histological, ultra-structural and genome-wide analyses of the prostate of our PAP-deficient mouse model (PAP(-/-)) with C57BL/6J background. The PAP(-/-) mouse prostate showed the development of slow-growing non-metastatic prostate adenocarcinoma. In order to find out the mechanism behind, we identified PAP-interacting proteins byyeast two-hybrid assays and a clear result was obtained for the interaction of PAP with snapin, a SNARE-associated protein which binds Snap25 facilitating the vesicular membrane fusion process. We confirmed this interaction by co-localization studies in TMPAP-transfected LNCaP cells (TMPAP/LNCaP cells) and in vivo FRET analyses in transient transfected LNCaP cells. The differential gene expression analyses revealed the dysregulation of the same genes known to be related to synaptic vesicular traffic. Both TMPAP and snapin were detected in isolated exosomes. Our results suggest that TMPAP is involved in endo-/exocytosis and disturbed vesicular traffic is a hallmark of prostate adenocarcinoma. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
128.7 (pelleting) / 128.7 (washing)
Protein markers
EV: Flotillin/ CD13/ Snapin
non-EV:
Proteomics
no
Show all info
Study aim
Other/function of a protein (TMPAP) in prostate cancer development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
50Ti
Pelleting: adjusted k-factor
128.7
Wash: volume per pellet (ml)
1
Wash: Rotor Type
50Ti
Wash: adjusted k-factor
128.7
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD13/ Flotillin/ Snapin
ELISA
Detected EV-associated proteins
CD13/ Flotillin/ Snapin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130110 1/1 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Perez-Hernandez D 2013 22%

Study summary

Full title
All authors
Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A, Sánchez-Madrid F, Vázquez J, Yáñez-Mó M
Journal
J Biol Chem
Abstract
Extracellular vesicles are emerging as a potent mechanism of intercellular communication because the (show more...)Extracellular vesicles are emerging as a potent mechanism of intercellular communication because they can systemically exchange genetic and protein material between cells. Tetraspanin molecules are commonly used as protein markers of extracellular vesicles, although their role in the unexplored mechanisms of cargo selection into exosomes has not been addressed. For that purpose, we have characterized the intracellular tetraspanin-enriched microdomain (TEM) interactome by high throughput mass spectrometry, in both human lymphoblasts and their derived exosomes, revealing a clear pattern of interaction networks. Proteins interacting with TEM receptors cytoplasmic regions presented a considerable degree of overlap, although some highly specific CD81 tetraspanin ligands, such as Rac GTPase, were detected. Quantitative proteomics showed that TEM ligands account for a great proportion of the exosome proteome and that a selective repertoire of CD81-associated molecules, including Rac, is not correctly routed to exosomes in cells from CD81-deficient animals. Our data provide evidence that insertion into TEM may be necessary for protein inclusion into the exosome structure. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Protein markers
EV: ERM/ EWI-2/ Rac
non-EV:
Proteomics
yes
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
EWI-2/ ERM/ Rac
ELISA
Detected EV-associated proteins
EWI-2/ ERM/ Rac
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV130106 1/1 Rattus norvegicus/rattus Cell culture supernatant (d)(U)C Mu W 2013 22%

Study summary

Full title
All authors
Mu W, Rana S, Zöller M
Journal
Neoplasia
Abstract
Exosomes are important intercellular communicators, where tumor exosomes (TEX) severely influence he (show more...)Exosomes are important intercellular communicators, where tumor exosomes (TEX) severely influence hematopoiesis and premetastatic organ cells. With the extracellular matrix (ECM) being an essential constituent of non-transformed tissues and tumors, we asked whether exosomes from a metastatic rat tumor also affect the organization of the ECM and whether this has consequences on host and tumor cell motility. TEX bind to individual components of the ECM, the preferential partner depending on the exosomes' adhesion molecule profile such that high CD44 expression is accompanied by hyaluronic acid binding and high ?6?4 expression by laminin (LN) 332 binding, which findings were confirmed by antibody blocking. TEX can bind to the tumor matrix already during exosome delivery but also come in contact with distinct organ matrices. Being rich in proteases, TEX modulate the ECM as demonstrated for degradation of collagens, LNs, and fibronectin. Matrix degradation by TEX has severe consequences on tumor and host cell adhesion, motility, and invasiveness. By ECM degradation, TEX also promote host cell proliferation and apoptosis resistance. Taken together, the host tissue ECM modulation by TEX is an important factor in the cross talk between a tumor and the host including premetastatic niche preparation and the recruitment of hematopoietic cells. Reorganization of the ECM by exosomes likely also contributes to organogenesis, physiological and pathologic angiogenesis, wound healing, and clotting after vessel disruption. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: MMP14/ MMP13/ ADAM10/ uPAR/ ADAM17/ ADAMTS1/ SDF1/ CD49b/ ADAMTS8/ bFGF/ TF/ CD29/ CD44/ CD11/ HGF/ CD49c/ CD104/ TGF-alpha/ CD13/ MMP9/ MMP2/ MMP3
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Wash: volume per pellet (ml)
10
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD11/ CD29/ CD49b/ CD49c/ CD104/ uPAR/ MMP2/ MMP3/ MMP9/ MMP13/ MMP14/ ADAM10/ ADAM17/ ADAMTS1/ ADAMTS8/ CD13/ CD49c/ CD44/ bFGF/ HGF/ SDF1/ TF/ TGF-alpha
ELISA
Detected EV-associated proteins
CD11/ CD29/ CD49b/ CD49c/ CD104/ uPAR/ MMP2/ MMP3/ MMP9/ MMP13/ MMP14/ ADAM10/ ADAM17/ ADAMTS1/ ADAMTS8/ CD13/ CD49c/ CD44/ bFGF/ HGF/ SDF1/ TF/ TGF-alpha
Characterization: Particle analysis
EV130105 1/2 Homo sapiens Cell culture supernatant DG
(d)(U)C
Menck K 2013 22%

Study summary

Full title
All authors
Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, Binder C
Journal
Oncotarget
Abstract
Recently, we have shown that macrophage (M?)-induced invasion of breast cancer cells requires upregu (show more...)Recently, we have shown that macrophage (M?)-induced invasion of breast cancer cells requires upregulation of Wnt 5a in M? leading to activation of ?-Catenin-independent Wnt signaling in the tumor cells. However, it remained unclear, how malignant cells induce Wnt 5a in M? and how it is transferred back to the cancer cells. Here we identify two types of extracellular particles as essential for this intercellular interaction in both directions. Plasma membrane-derived microvesicles (MV) as well as exosomes from breast cancer cells, although biologically distinct populations, both induce Wnt 5a in M?. In contrast, the particle-free supernatant and vesicles from benign cells, such as platelets, have no such effect. Induction is antagonized by the Wnt inhibitor Dickkopf-1. Subsequently, Wnt 5a is shuttled via responding M?-MV and exosomes to the tumor cells enhancing their invasion. Wnt 5a export on both vesicle fractions depends at least partially on the cargo protein Evenness interrupted (Evi). Its knockdown leads to Wnt 5a depletion of both particle populations and reduced vesicle-mediated invasion. In conclusion, MV and exosomes are critical for M?-induced invasion of cancer cells since they are responsible for upregulation of M?-Wnt 5a as well as for its delivery to the recipient cells via a reciprocal loop. Although of different biogenesis, both populations share common features regarding function and Evi-dependent secretion of non-canonical Wnts. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Protein markers
EV: TSG101/ EMMPRIN
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
35
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2.25
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
TSG101/ EMMPRIN
ELISA
Detected EV-associated proteins
EMMPRIN
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130105 2/2 Homo sapiens Cell culture supernatant DG
(d)(U)C
Filtration
Menck K 2013 22%

Study summary

Full title
All authors
Menck K, Klemm F, Gross JC, Pukrop T, Wenzel D, Binder C
Journal
Oncotarget
Abstract
Recently, we have shown that macrophage (M?)-induced invasion of breast cancer cells requires upregu (show more...)Recently, we have shown that macrophage (M?)-induced invasion of breast cancer cells requires upregulation of Wnt 5a in M? leading to activation of ?-Catenin-independent Wnt signaling in the tumor cells. However, it remained unclear, how malignant cells induce Wnt 5a in M? and how it is transferred back to the cancer cells. Here we identify two types of extracellular particles as essential for this intercellular interaction in both directions. Plasma membrane-derived microvesicles (MV) as well as exosomes from breast cancer cells, although biologically distinct populations, both induce Wnt 5a in M?. In contrast, the particle-free supernatant and vesicles from benign cells, such as platelets, have no such effect. Induction is antagonized by the Wnt inhibitor Dickkopf-1. Subsequently, Wnt 5a is shuttled via responding M?-MV and exosomes to the tumor cells enhancing their invasion. Wnt 5a export on both vesicle fractions depends at least partially on the cargo protein Evenness interrupted (Evi). Its knockdown leads to Wnt 5a depletion of both particle populations and reduced vesicle-mediated invasion. In conclusion, MV and exosomes are critical for M?-induced invasion of cancer cells since they are responsible for upregulation of M?-Wnt 5a as well as for its delivery to the recipient cells via a reciprocal loop. Although of different biogenesis, both populations share common features regarding function and Evi-dependent secretion of non-canonical Wnts. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C + Filtration
Protein markers
EV: TSG101/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2.25
Orientation
Top-down
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130104 1/1 Homo sapiens Cell culture supernatant (d)(U)C Melachroinou K 2013 22%

Study summary

Full title
All authors
Melachroinou K, Xilouri M, Emmanouilidou E, Masgrau R, Papazafiri P, Stefanis L, Vekrellis K
Journal
Neurobiol Aging
Abstract
?-Synuclein (AS) plays a crucial role in Parkinson's disease pathogenesis. AS is normally secreted f (show more...)?-Synuclein (AS) plays a crucial role in Parkinson's disease pathogenesis. AS is normally secreted from neuronal cells and can thus exert paracrine effects. We have previously demonstrated that naturally secreted AS species, derived from SH-SY5Y cells inducibly overexpressing human wild type AS, can be toxic to recipient neuronal cells. In the current study, we show that application of secreted AS alters membrane fluidity and increases calcium (Ca2+) entry. This influx is reduced on pharmacological inhibition of voltage-operated Ca2+ channels. Although no change in free cytosolic Ca2+ levels is observed, a significantly increased mitochondrial Ca2+ sequestration is found in recipient cells. Application of voltage-operated Ca2+ channel blockers or Ca2+ chelators abolishes AS-mediated toxicity. AS-treated cells exhibit increased calpain activation, and calpain inhibition greatly alleviates the observed toxicity. Collectively, our data suggest that secreted AS exerts toxicity through engagement, at least in part, of the Ca2+ homeostatic machinery. Therefore, manipulating Ca2+ signaling pathways might represent a potential therapeutic strategy for Parkinson's disease. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Alix/ Flotilin1/ Alpha-synuclein
non-EV: Albumin
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
90
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ Flotilin1/ Alpha-synuclein
Detected contaminants
Albumin
ELISA
Detected EV-associated proteins
Alpha-synuclein
Characterization: Particle analysis
EV130041 1/1 Rattus norvegicus/rattus Urine (d)(U)C Higashijima Y 2013 22%

Study summary

Full title
All authors
Higashijima Y, Sonoda H, Takahashi S, Kondo H, Shigemura K, Ikeda M
Journal
Am J Physiol Renal Physiol
Abstract
Urinary exosomes are small vesicles secreted into urine from all renal epithelial cell types and kno (show more...)Urinary exosomes are small vesicles secreted into urine from all renal epithelial cell types and known to contain proteins that are involved in renal secretion and reabsorption. Among these proteins, urinary exosomal aquaporin-2 (AQP2) has been suggested to be useful for diagnosis of renal disease. However, the mechanisms underlying the excretion of urinary exosomal AQP2 are largely unknown. In this study, we examined the mechanisms of urinary exosomal AQP2 excretion in vivo, using diuretics including furosemide (FS), an inhibitor of the sodium-potassium-chloride symporter; acetazolamide (ACTZ), an inhibitor of carbonic anhydrase; OPC-31260 (OPC), a vasopressin type 2 receptor antagonist; and NaHCO3, a urinary alkalizing agent. Samples of urine from rats were collected for 2 h just after treatment with each diuretic, and urinary exosomes were isolated by ultracentrifugation. Urinary exosomal AQP2 excretion was dramatically increased by treatment with FS accompanied by urine acidification or with ACTZ accompanied by urine alkalization. Immunohistochemistry showed that apical localization of AQP2 was clearly evident and the plasma vasopressin level was increased after each treatment. Although treatment with OPC alone had no significant effect, coadministration of OPC completely inhibited the FS-induced and partially reduced the ACTZ-induced responses, respectively. Treatment with NaHCO3 increased the excretion of urinary exosomal AQP2 accompanied by urine alkalization. This increased response was partially inhibited by coadministration of OPC. These data suggest that an increased plasma level of vasopressin promoted the excretion of urinary exosomal AQP2 and that urine alkalinization also increased it independently of vasopressin. (hide)
EV-METRIC
22% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: AQP2
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Rattus norvegicus/rattus
Sample Type
Urine
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
AQP2
ELISA
Detected EV-associated proteins
AQP2
Characterization: Particle analysis
EV130092 1/1 Homo sapiens Cell culture supernatant (d)(U)C Harshman SW 2013 22%

Study summary

Full title
All authors
Harshman SW, Canella A, Ciarlariello PD, Rocci A, Agarwal K, Smith EM, Talabere T, Efebera YA, Hofmeister CC, Benson DM Jr, Paulaitis ME, Freitas MA, Pichiorri F
Journal
Proteomics
Abstract
Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistenc (show more...)Multiple myeloma (MM) is a hematological malignancy caused by a microenviromentally aided persistence of plasma cells in the bone marrow. The role that extracellular vesicles (EVs), microvesicles and exosomes, released by MM cells have in cell-to-cell communication and signaling in the bone marrow is currently unknown. This paper describes the proteomic content of EVs derived from MM.1S and U266 MM cell lines. First, we compared the protein identifications between the vesicles and cellular lysates of each cell line finding a large overlap in protein identifications. Next, we applied label-free spectral count quantitation to determine proteins with differential abundance between the groups. Finally, we used bioinformatics to categorize proteins with significantly different abundances into functional groups. The results illustrate the first use of label-free spectral counting applied to determine relative protein abundances in EVs. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Beta-actin/ CD9/ GAPDH/ MHC1
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD9/ MHC1/ GAPDH/ Beta-actin
ELISA
Detected EV-associated proteins
MHC1/ GAPDH/ Beta-actin
Characterization: Particle analysis
DLS
EM
EM-type
cryo EM
Image type
Close-up
EV130088 1/1 Homo sapiens Cell culture supernatant DG
(d)(U)C
Escrevente C 2013 22%

Study summary

Full title
All authors
Escrevente C, Grammel N, Kandzia S, Zeiser J, Tranfield EM, Conradt HS, Costa J
Journal
PLoS One
Abstract
Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neu (show more...)Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Protein markers
EV: TSG101/ CD9
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD9/ TSG101
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130142 2/2 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
Di Noto G 2013 22%

Study summary

Full title
All authors
Di Noto G, Paolini L, Zendrini A, Radeghieri A, Caimi L, Ricotta D
Journal
PLoS One
Abstract
Plasma cell dyscrasias are immunosecretory disorders that can lead to hematological malignancies suc (show more...)Plasma cell dyscrasias are immunosecretory disorders that can lead to hematological malignancies such as Multiple Myeloma (MM). MM accounts for 15% of all hematologic cancers, and those diagnosed with MM typically become severely ill and have a low life expectancy. Monoclonal immunoglobulin Free Light Chains (FLC) are present in the serum and urine of many patients with plasma cell diseases. The biological differences between monoclonal FLCs, produced under malignant or benign dyscrasias, has not yet been characterized. In the present study, we show that endothelial and heart muscle cell lines internalize kappa and lambda FLCs. After internalization, FLCs are rerouted in the extracellular space via microvesicles and exosomes that can be re-internalized in contiguous cells. Only FLCs secreted from malignant B Lymphocytes were carried in Hsp70, annexin V, and c-src positive vesicles. In both MM and AL Amyloidosis patients we observed an increase in microvesicle and exosome production. Isolated serum vesicles from MM, AL Amyloidosis and monoclonal gammopathy of undetermined significance (MGUS) patients contained FLCs. Furthermore MM and AL amyloidosis vesicles were strongly positive for Hsp70, annexin V, and c-src compared to MGUS and control patients. These are the first data implying that FLCs reroute via microvesicles in the blood stream, and also suggest a potential novel mechanism of c-src activation in plasma cell dyscrasia. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration
Adj. k-factor
89.21 (pelleting)
Protein markers
EV: Tubulin/ Caveolin1/ Annexin5/ LAMP1/ HSP70
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Pelleting: rotor type
TLA55
Pelleting: adjusted k-factor
89.21
Filtration steps
0.2µm > x > 0.1µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
HSP70/ Caveolin1/ Annexin5/ LAMP1/ Tubulin
ELISA
Detected EV-associated proteins
Caveolin1/ Annexin5/ LAMP1/ Tubulin
Characterization: Particle analysis
EV130037 1/1 Mus musculus Intestinal mucus DG
(d)(U)C
Deng ZB 2013 22%

Study summary

Full title
All authors
Deng ZB, Zhuang X, Ju S, Xiang X, Mu J, Liu Y, Jiang H, Zhang L, Mobley J, McClain C, Feng W, Grizzle W, Yan J, Miller D, Kronenberg M, Zhang HG
Journal
J Immunol
Abstract
Regulation and induction of anergy in NKT cells of the liver can inhibit autoimmune and antitumor re (show more...)Regulation and induction of anergy in NKT cells of the liver can inhibit autoimmune and antitumor responses by mechanisms that are poorly understood. We investigated the effects of PGE2, delivered by intestinal, mucus-derived, exosome-like nanoparticles (IDENs), on NKT cells in mice. In this study, we demonstrate that IDENs migrate to the liver where they induce NKT cell anergy. These effects were mediated by an IDENs' PGE2. Blocking PGE2 synthesis attenuated IDENs inhibition of induction of IFN-? and IL-4 by ?-galactosylceramide (?-GalCer)-stimulated liver NKT cells in a PGE2 E-type prostanoid 2/E-type prostanoid 4 receptor-mediated manner. Proinflammatory conditions enhanced the migration of IDENs to the liver where ?-GalCer and PGE2 induced NKT anergy in response to subsequent ?-GalCer stimulation. These findings demonstrate that IDENs carrying PGE2 can be transferred from the intestine to the liver, where they act as immune modulators, inducing an anergic-like state of NKT cells. These reagents might be developed as therapeutics for autoimmune liver diseases. (hide)
EV-METRIC
22% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Intestinal mucus
Sample origin
DNF
Focus vesicles
exosomes / Nanoparticles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + (d)(U)C
Protein markers
EV: TSG101/ CD63/ CD81/ Annexin5/ HSP70/ Rab11/ Rab5/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Intestinal mucus
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
60
Density gradient
Density medium
Sucrose
Lowest density fraction
8
Highest density fraction
60
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD81/ CD9/ HSP70/ TSG101/ Rab5/ Rab11/ Annexin5
ELISA
Detected EV-associated proteins
Rab5/ Rab11/ Annexin5
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV130086 1/5 Homo sapiens Cell culture supernatant (d)(U)C
Filtration
IAF
Chugh PE 2013 22%

Study summary

Full title
All authors
Chugh PE, Sin SH, Ozgur S, Henry DH, Menezes P, Griffith J, Eron JJ, Damania B, Dittmer DP
Journal
PLoS Pathog
Abstract
MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Rec (show more...)MicroRNAs (miRNAs) are stable, small non-coding RNAs that modulate many downstream target genes. Recently, circulating miRNAs have been detected in various body fluids and within exosomes, prompting their evaluation as candidate biomarkers of diseases, especially cancer. Kaposi's sarcoma (KS) is the most common AIDS-associated cancer and remains prevalent despite Highly Active Anti-Retroviral Therapy (HAART). KS is caused by KS-associated herpesvirus (KSHV), a gamma herpesvirus also associated with Primary Effusion Lymphoma (PEL). We sought to determine the host and viral circulating miRNAs in plasma, pleural fluid or serum from patients with the KSHV-associated malignancies KS and PEL and from two mouse models of KS. Both KSHV-encoded miRNAs and host miRNAs, including members of the miR-17-92 cluster, were detectable within patient exosomes and circulating miRNA profiles from KSHV mouse models. Further characterization revealed a subset of miRNAs that seemed to be preferentially incorporated into exosomes. Gene ontology analysis of signature exosomal miRNA targets revealed several signaling pathways that are known to be important in KSHV pathogenesis. Functional analysis of endothelial cells exposed to patient-derived exosomes demonstrated enhanced cell migration and IL-6 secretion. This suggests that exosomes derived from KSHV-associated malignancies are functional and contain a distinct subset of miRNAs. These could represent candidate biomarkers of disease and may contribute to the paracrine phenotypes that are a characteristic of KS. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C + Filtration + IAF
Adj. k-factor
232.7 (pelleting) / 232.7 (washing)
Protein markers
EV: CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
Differential ultracentrifugation
centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
70
Pelleting: rotor type
SW32
Pelleting: adjusted k-factor
232.7
Wash: volume per pellet (ml)
35
Wash: Rotor Type
SW32
Wash: adjusted k-factor
232.7
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD9
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV130035 1/1 Homo sapiens Cell culture supernatant (d)(U)C Christianson HC 2013 22%

Study summary

Full title
All authors
Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M
Journal
Proc Natl Acad Sci U S A
Abstract
Extracellular vesicle (EV)-mediated intercellular transfer of signaling proteins and nucleic acids h (show more...)Extracellular vesicle (EV)-mediated intercellular transfer of signaling proteins and nucleic acids has recently been implicated in the development of cancer and other pathological conditions; however, the mechanism of EV uptake and how this may be targeted remain as important questions. Here, we provide evidence that heparan sulfate (HS) proteoglycans (PGs; HSPGs) function as internalizing receptors of cancer cell-derived EVs with exosome-like characteristics. Internalized exosomes colocalized with cell-surface HSPGs of the syndecan and glypican type, and exosome uptake was specifically inhibited by free HS chains, whereas closely related chondroitin sulfate had no effect. By using several cell mutants, we provide genetic evidence of a receptor function of HSPG in exosome uptake, which was dependent on intact HS, specifically on the 2-O and N-sulfation groups. Further, enzymatic depletion of cell-surface HSPG or pharmacological inhibition of endogenous PG biosynthesis by xyloside significantly attenuated exosome uptake. We provide biochemical evidence that HSPGs are sorted to and associate with exosomes; however, exosome-associated HSPGs appear to have no direct role in exosome internalization. On a functional level, exosome-induced ERK1/2 signaling activation was attenuated in PG-deficient mutant cells as well as in WT cells treated with xyloside. Importantly, exosome-mediated stimulation of cancer cell migration was significantly reduced in PG-deficient mutant cells, or by treatment of WT cells with heparin or xyloside. We conclude that cancer cell-derived exosomes use HSPGs for their internalization and functional activity, which significantly extends the emerging role of HSPGs as key receptors of macromolecular cargo. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Protein markers
EV: Tubulin/ CD63/ Rab5/ CD81
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Differential ultracentrifugation
centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Obtain an EV pellet :
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
CD63/ CD81/ Rab5/ Tubulin
Detected contaminants
Cell organelle protein
ELISA
Detected EV-associated proteins
Rab5/ Tubulin
Flow cytometry specific beads
Selected surface protein(s)
Yes
Characterization: Particle analysis
Particle analysis: flow cytometry
EM
EM-type
transmission EM
Image type
Wide-field
EV130085 1/1 Homo sapiens Cell culture supernatant (d)(U)C Choi H 2013 22%

Study summary

Full title
All authors
Choi H, Lee H, Kim SR, Gho YS, Lee SK
Journal
J Virol
Abstract
Epstein-Barr Virus (EBV) generates a variety of viral microRNAs (miRNAs) by processing the BHRF1 and (show more...)Epstein-Barr Virus (EBV) generates a variety of viral microRNAs (miRNAs) by processing the BHRF1 and BamHI A rightward (BART) transcripts. BART miRNAs are expressed in all cells latently infected with EBV, but the functions of most BART miRNAs remain unknown. The results of a cell proliferation assay revealed that miR-BART15-3p inhibited cell proliferation. Fluorescence-activated cell sorting following staining with annexin V or propidium iodide showed that miR-BART15-3p promoted apoptosis. Furthermore, the inhibitor for miR-BART15-3p increased cell growth and reduced apoptosis in EBV-infected cells. Using bioinformatic analyses, we predicted that miR-BART15-3p may target the antiapoptotic B-cell lymphoma 2 (BCL2), BCL2L2, DEAD (Asp-Glu-Ala-Asp) box polypeptide 42 (DDX42), and baculovirus inhibitor of apoptosis repeat-containing ubiquitin-conjugating enzyme (BRUCE) mRNAs. The luciferase reporter assay showed that only the 3' untranslated region (UTR) of BRUCE was affected by miR-BART15-3p. Two putative seed-matched sites for miR-BART15-3p were evident on the BRUCE 3' UTR. The results of a mutation study indicated that miR-BART15-3p hybridized only with the first seed-matched site on the BRUCE 3' UTR. miR-BART15-3p downregulated the BRUCE protein in EBV-negative cells, while the inhibitor for miR-BART15-3p upregulated the BRUCE protein in EBV-infected cells without affecting the BRUCE mRNA level. miR-BART15-3p was secreted from EBV-infected gastric carcinoma cells, and the level of miR-BART15-3p was 2- to 16-fold higher in exosomes than in the corresponding cells. Our data suggest that miR-BART15-3p can induce apoptosis partially by inhibiting the translation of the apoptosis inhibitor BRUCE. Further study is warranted to understand the role of miR-BART15-3p in the EBV life cycle. (hide)
EV-METRIC
22% (45th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
(d)(U)C
Adj. k-factor
156.9 (pelleting)
Protein markers
EV: CD81/ CD9
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Other/activity of a specific miRNA in viral pathogenesis
Sample
Species