Search > Results

You searched for: 2011 (Year of publication)

Showing 101 - 150 of 170

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method/Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Isolation method
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110078 1/2 Escherichia coli Bacteria (d)(U)C
Filtration
Roy K 2011 11%

Study summary

Full title
All authors
Roy K, Hamilton DJ, Munson GP, Fleckenstein JM
Journal
Clin Vaccine Immunol
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a heterogeneous group of pathogens that produce (show more...)Enterotoxigenic Escherichia coli (ETEC) strains are a heterogeneous group of pathogens that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Collectively, these pathogens are responsible for hundreds of thousands of deaths annually in developing countries, particularly in children under the age of 5 years. The heterogeneity of previously investigated molecular targets and the lack of complete sustained protection afforded by antitoxin immunity have impeded progress to date toward a broadly protective vaccine. Many pathogens, including ETEC, have the capacity to form outer membrane vesicles (OMV), which often contain one or more virulence proteins. Prompted by recent studies that identified several immunogenic virulence proteins in outer membrane vesicles of ETEC, we sought to examine the immunogenicity and protective efficacy of these structures in a murine model of infection. Here we demonstrate that immunization with OMV impairs ETEC colonization of the small intestine and stimulates antibodies that recognize the heat-labile toxin and two additional putative virulence proteins, the EtpA adhesin and CexE. Similar to earlier studies with EtpA, vaccination with LT alone also inhibited intestinal colonization. Together, these findings suggest that OMV could be exploited to deliver protective antigens relevant to development of ETEC vaccines. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: LT-B/ LT-A/ CexE/ EtpA
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Escherichia coli
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
No
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EtpA/ CexE/ LT-A/ LT-B
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EtpA/ CexE/ LT-A/ LT-B
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110078 2/2 Escherichia coli Bacteria (d)(U)C
DG
Filtration
Roy K 2011 11%

Study summary

Full title
All authors
Roy K, Hamilton DJ, Munson GP, Fleckenstein JM
Journal
Clin Vaccine Immunol
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a heterogeneous group of pathogens that produce (show more...)Enterotoxigenic Escherichia coli (ETEC) strains are a heterogeneous group of pathogens that produce heat-labile (LT) and/or heat-stable (ST) enterotoxins. Collectively, these pathogens are responsible for hundreds of thousands of deaths annually in developing countries, particularly in children under the age of 5 years. The heterogeneity of previously investigated molecular targets and the lack of complete sustained protection afforded by antitoxin immunity have impeded progress to date toward a broadly protective vaccine. Many pathogens, including ETEC, have the capacity to form outer membrane vesicles (OMV), which often contain one or more virulence proteins. Prompted by recent studies that identified several immunogenic virulence proteins in outer membrane vesicles of ETEC, we sought to examine the immunogenicity and protective efficacy of these structures in a murine model of infection. Here we demonstrate that immunization with OMV impairs ETEC colonization of the small intestine and stimulates antibodies that recognize the heat-labile toxin and two additional putative virulence proteins, the EtpA adhesin and CexE. Similar to earlier studies with EtpA, vaccination with LT alone also inhibited intestinal colonization. Together, these findings suggest that OMV could be exploited to deliver protective antigens relevant to development of ETEC vaccines. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Filtration
Protein markers
EV: CexE/ EtpA
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Escherichia coli
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
No
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
10
Highest density fraction
35
Orientation
Bottom-up
Filtration steps
0.45µm > x > 0.22µm,
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
EtpA/ CexE
ELISA
Antibody details provided?
No
Detected EV-associated proteins
EtpA/ CexE
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV110056 1/1 Homo sapiens Blood plasma (d)(U)C
Filtration
Ren Y 2011 11%

Study summary

Full title
All authors
Ren Y, Yang J, Xie R, Gao L, Yang Y, Fan H, Qian K
Journal
Transfusion
Abstract
BACKGROUND: Exosomes are small membrane vesicles that are secreted from many cell types into various (show more...)BACKGROUND: Exosomes are small membrane vesicles that are secreted from many cell types into various body fluids. These vesicles are thought to play a role in cell-cell interactions. STUDY DESIGN AND METHODS: Vesicles were isolated from human plasma of healthy donors by differential ultracentrifugation and ultrafiltration. The vesicles were identified by transmission electron microscopy, and their biochemical characteristics were analyzed by Western blot and flow cytometry. The immune-modulatory ability of exosomal-like vesicles was examined by incubating them with CD4+ T cells for CD4+ T-cell proliferation and apoptosis assays in vitro. RESULTS: Vesicles purified from human plasma displayed shapes and sizes similar to those of previously described exosomes and contained exosomes marker proteins CD63 and CD81. They also expressed molecules such as MHC Class II molecules, CD80, CD86, and the cell signal transduction molecules Wnt3a, Wnt5a, and FasL. Furthermore, functional analysis showed that allogeneic plasma exosomes restrained the survival of CD4+ T cells. Plasma exosomes can induce dose-dependent suppression of proliferation of activated CD4+ T cells, with the strongest responses induced by 500 µg/mL exosomes in vitro. Antibodies against exosomes FasL can block the activity of exosomes on CD4+ T-cell apoptosis. Moreover, three different concentrations of CD4+ T cells were inhibited by plasma exosomes and the suppressive function was not dependent on interleukin-2. CONCLUSION: Exosomes present in human plasma contain immunity-associated molecules and can induce CD4+ T-cell apoptosis in vitro. Plasma exosomes have the capacity to influence immune responses. (hide)
EV-METRIC
11% (26th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ CD63/ MHC2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.2µm > x > 0.1µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81/ MHC2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC2
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110055 1/1 Homo sapiens NAY (d)(U)C
DC
Petersen SH 2011 11%

Study summary

Full title
All authors
Petersen SH, Odintsova E, Haigh TA, Rickinson AB, Taylor GS, Berditchevski F
Journal
Eur J Immunol
Abstract
Interactions between MHC class II (MHC II)-positive APCs and CD4(+) T cells are central to adaptive (show more...)Interactions between MHC class II (MHC II)-positive APCs and CD4(+) T cells are central to adaptive immune responses. Using an Epstein-Barr virus (EBV)-transformed B lymphoblastoid cell line (LCL) as MHC II-positive APCs and CD4(+) T-cell clones specific for two endogenously expressed EBV antigens, we found that shRNA knockdown of the tetraspanin protein CD63 in LCL cells consistently led to increased CD4(+) T-cell recognition. This effect was not due to enhanced antigen processing nor to changes in MHC II expression since CD63 knockdown did not influence the amount or dimerization of MHC II in LCL cells. We therefore investigated the possible involvement of exosomes, small MHC II- and tetraspanin-abundant vesicles which are secreted by LCL cells and which we found could themselves activate the CD4(+) T-cell clones in an MHC II-dependent manner. While equal loadings of exosomes purified from the control and CD63(low) LCLs stimulated T cells to a comparable degree, we found that exosome production significantly increased following CD63-knockdown, suggesting that this may underlie the greater T-cell stimulatory capacity of the CD63(low) LCLs. Taken together, our data reveal a new insight into the mechanisms by which tetraspanins are involved in the regulation of MHC II-dependent T-cell stimulation. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: CD63/ Actin/ MHC2/ ICAM1/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ MHC1/ MHC2/ ICAM1/ Actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC1/ MHC2/ ICAM1/ Actin
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
MHC2
Image type
Wide-field
EV110054 1/1 Homo sapiens Ascites (d)(U)C
DC
Peng P 2011 11%

Study summary

Full title
All authors
Peng P, Yan Y, Keng S
Journal
Oncol Rep
Abstract
This study was performed to identify the origin of the ascites-derived exosomes from patients with o (show more...)This study was performed to identify the origin of the ascites-derived exosomes from patients with ovarian cancer and to observe the effect of exosomes on anti-tumor immunity. Exosomes were isolated from the ascites of patients with ovarian epithelial cancer by ultracentrifugation plus density gradient centrifugation. The origin of exosomes was identified by immunoelectronmicroscopy (IEM). The growth curve of the tumor cell line SKOV3 cultured with or without exosomes was analyzed. The apoptosis of autogeneic tumor cells (ATCs) and SKOV3 cells affected by exosomes was measured by flow cytometry (FCM) and light phase contrast microscopy. The cytotoxic effect of the peripheral blood mononuclear cells (PBMCs) stimulated by exosomes and/or dendritic cells (DCs) on ovarian cancer cells was measured using a CCK-8 assay. The levels of IFN-? released by PBMCs stimulated by exosomes and/or DCs were measured by ELISA. The apoptosis of PBMCs and DCs affected by exosomes was measured by FCM and light microscopy. Whether the mature process of DCs was affected by exosomes was studied by FCM. The ratio of CD4+ T cell and CD8+ T cell were measured by FCM. FasL and TRAIL molecules on exosomes were detected by western blot analysis. The human FasL antagonistic antibody was used to block the apoptosis of DCs and PBMCs induced by exosomes. The receptors of TRAIL DR4 and DR5 on PBMCs and DCs were detected by FCM. In 41 patients examined, we isolated exosomes from the ascites of 35 patients. We detected TCR, CD20, HLA-DR, B7-2, HER2/neu, CA125 and Histone H2A on exosomes. We found that exosomes might impair the cytotoxic activity of PBMCs when DCs are present. We found that exosomes had no effect on the growth and apoptosis of SKOV3 cells. However, exosomes may induce apoptosis of precursors, mature DCs and PBMCs. We found that FasL and TRAIL were present in the exosome suspension and addition of an anti-FasL antibody may decrease the percentage of apoptosis of DCs and PBMCs. We conclude that exosomes exist in ascites of 85.4% of patients with ovarian cancer. Moreover, these exosomes may be of multi-origin. Exosomes had no effect on the growth and apoptosis of tumor cells but impaired the cytotoxic activity of PBMCs in the presence of DCs. Exosomes also may induce apoptosis of the precursors of DCs, DCs and PBMCs. FasL and TRAIL on exosomes may partly account for the apoptosis of cells of the immune system. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Ascites
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV: CD81/ HSP70/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Ascites
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD81/ HSP70/ MHC1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC1
Characterization: Particle analysis
EM
EM-type
transmission EM/ immune EM
EM protein
TCR;CD20;MHC2;Histone H2A;B7-2;Neuregulin
Image type
Wide-field
EV110106 1/1 Homo sapiens Urine (d)(U)C Oliveira RA 2011 11%

Study summary

Full title
All authors
Oliveira RA, Diniz LF, Teotônio LO, Lima CG, Mota RM, Martins A, Sanches TR, Seguro AC, Andrade L, Silva GB Jr, Libório AB, Daher EF
Journal
Kidney Int
Abstract
Renal dysfunction seen in patients with American cutaneous leishmaniasis (ACL) has been attributed t (show more...)Renal dysfunction seen in patients with American cutaneous leishmaniasis (ACL) has been attributed to the use of antimonials for treatment. To determine whether ACL itself causes tubular dysfunction, we measured renal function in 37 patients with ACL prior to their treatment and compared results to that in 10 healthy volunteers of similar mean age. None of the patients presented with glomerular dysfunction; however, 27 had a urinary concentrating defect. There was no statistical difference between groups in the pre- and post-desmopressin test of urine osmolality, but the post-test urine osmolality of the controls was significantly higher. Urinary AQP2 levels, determined by western blot of isolated exosomes, were found to be significantly lower in patients than in controls, whereas that of the cotransporter (NKCC2) was significantly higher. A urinary acidification defect (post-test pH greater than 5.50 following calcium chloride) was found in 15 patients. Pretest plasma bicarbonate was below normal in 12 patients as was the pretest plasma pH in 14. Expression of the Na/H exchanger (NHE3), H(+)-ATPase, and pendrin were all significantly higher in patients with ACL than in controls. A combined urinary concentration and acidification defect was found in 12 patients. Thus, the urinary concentrating defect of ACL may be caused by decreased AQP2, with increased NKCC2 compensatory. Pendrin upregulation may be related to the urinary acidification defect with increased NHE3 and H(+)-ATPase also compensatory. Hence, ACL can cause asymptomatic renal tubular dysfunction. (hide)
EV-METRIC
11% (33rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: AQP2/ NHE3
non-EV:
Proteomics
no
Show all info
Study aim
Other/Role of ACL in renal tubular dysfunction
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
AQP2/ NHE3
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AQP2/ NHE3
Characterization: Particle analysis
None
EV110053 1/1 Homo sapiens Saliva (d)(U)C
Filtration
Gel filtration
UF
Ogawa Y 2011 11%

Study summary

Full title
All authors
Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M, Yanoshita R
Journal
Biol Pharm Bull
Abstract
Saliva contains a large number of proteins that participate in the protection of oral tissue. Exosom (show more...)Saliva contains a large number of proteins that participate in the protection of oral tissue. Exosomes are small vesicles (30-100 nm in diameter) with an endosome-derived limiting membrane that are secreted by a diverse range of cell types. We have recently demonstrated that exosomes are present in human whole saliva. In this study, we found that whole saliva contained at least two types of exosomes (exosome I and exosome II) that are different in size and protein composition. Proteomic analysis revealed that both types of exosomes contained Alix, Tsg101 and Hsp70, all exosomal markers, immunoglobulin A and polymeric immunoglobulin receptor, whereas they had different protein compositions. Most of dipeptidyl peptidase IV known as CD26 in whole saliva, was present on the exosome II and metabolically active in cleaving chemokines (CXCL11 and CXCL12). Human whole saliva exosomes might participate in the catabolism of bioactive peptides and play a regulatory role in local immune defense in the oral cavity. (hide)
EV-METRIC
11% (31st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Saliva
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Gel filtration
UF
Protein markers
EV: TSG101/ CD63/ Galectin3/ Alix/ Actin/ DPP IV/ HSP70
non-EV:
Proteomics
yes
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Saliva
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Other
Name other separation method
Gel filtration
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ CD63/ HSP70/ TSG101/ "Actin/ Galectin3/ DPP IV"
ELISA
Antibody details provided?
No
Detected EV-associated proteins
"Actin/ Galectin3/ DPP IV"
Characterization: Particle analysis
EM
EM-type
immune EM
Image type
Wide-field
EV110103 1/1 Homo sapiens NAY (d)(U)C Morgan K 2011 11%

Study summary

Full title
All authors
Morgan K, Stavrou E, Leighton SP, Miller N, Sellar R, Millar RP
Journal
Prostate
Abstract
BACKGROUND AND AIMS: Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs b (show more...)BACKGROUND AND AIMS: Human metastatic prostate cancer cell growth can be inhibited by GnRH analogs but effects on virus-immortalized prostate cells have not been investigated. METHODS: Virus-immortalized prostate cells were stably transfected with rat GnRH receptor cDNA and levels of GnRH binding were correlated with GnRH effects on signaling, cell cycle, growth, exosome production, and apoptosis. RESULTS: High levels of cell surface GnRH receptor occurred in transfected papillomavirus-immortalized WPE-1-NB26 epithelial cells but not in non-tumourigenic RWPE-1, myoepithelial WPMY-1 cells, or SV40-immortalized PNT1A. Endogenous cell surface GnRH receptor was undetectable in non-transfected cells or cancer cell lines LNCaP, PC3, and DU145. GnRH receptor levels correlated with induction of inositol phosphates, elevation of intracellular Ca(2+) , cytoskeletal actin reorganization, modulation of ERK activation and cell growth-inhibition with GnRH agonists. Hoechst 33342 DNA staining-cell sorting indicated accumulation of cells in G2 following agonist treatment. Release of exosomes from transfected WPE-1-NB26 was unaffected by agonists, unlike induction observed in HEK293([SCL60]) cells. Increased PARP cleavage and apoptotic body production were undetectable during growth-inhibition in WPE-1-NB26 cells, contrasting with HEK293([SCL60]) . EGF receptor activation inhibited GnRH-induced ERK activation in WPE-1-NB26 but growth-inhibition was not rescued by EGF or PKC inhibitor Ro320432. Growth of cells expressing low levels of GnRH receptor was not affected by agonists. CONCLUSIONS: Engineered high-level GnRH receptor activation inhibits growth of a subset of papillomavirus-immortalized prostate cells. Elucidating mechanisms leading to clone-specific differences in cell surface GnRH receptor levels is a valuable next step in developing strategies to exploit prostate cell anti-proliferation using GnRH agonists. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Beta-actin
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
35
Pelleting: rotor type
AH627
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Beta-actin
Characterization: Particle analysis
None
EV110049 1/1 Homo sapiens NAY (d)(U)C
Filtration
Mittelbrunn M 2011 11%

Study summary

Full title
All authors
Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González MÁ, Bernad A, Sánchez-Madrid F
Journal
Nat Commun
Abstract
The immune synapse is an exquisitely evolved means of communication between T cells and antigen-pres (show more...)The immune synapse is an exquisitely evolved means of communication between T cells and antigen-presenting cells (APCs) during antigen recognition. Recent evidence points to the transfer of RNA via exosomes as a novel mode of intercellular communication. Here we show that exosomes of T, B and dendritic immune cells contain microRNA (miRNA) repertoires that differ from those of their parent cells. We investigate whether miRNAs are exchanged during cognate immune interactions, and demonstrate the existence of antigen-driven unidirectional transfer of miRNAs from the T cell to the APC, mediated by the delivery of CD63+ exosomes on immune synapse formation. Inhibition of exosome production by targeting neutral sphingomyelinase-2 impairs transfer of miRNAs to APCs. Moreover, miRNAs transferred during immune synapsis are able to modulate gene expression in recipient cells. Thus, our results support a mechanism of cellular communication involving antigen-dependent, unidirectional intercellular transfer of miRNAs by exosomes during immune synapsis. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: Particle analysis
None
EV110048 1/1 Homo sapiens NAY (d)(U)C Lim PK 2011 11%

Study summary

Full title
All authors
Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA, Greco SJ, Bryan M, Patel PS, Rameshwar P
Journal
Cancer Res
Abstract
Bone marrow (BM) metastasis of breast cancer (BC) can recur even decades after initial diagnosis and (show more...)Bone marrow (BM) metastasis of breast cancer (BC) can recur even decades after initial diagnosis and treatment, implying the long-term survival of disseminated cancer cells in a dormant state. Here we investigated the role of microRNAs (miRNA) transmitted from BM stroma to BC cells via gap junctions and exosomes in tumor cell quiescence. MDA-MB-231 and T47D BC cells arrest in G(0) phase of the cell cycle when cocultured with BM stroma. Analyses of miRNA expression profiles identified numerous miRNAs implicated in cell proliferation including miR-127, -197, -222, and -223 targeting CXCL12. Subsequently, we showed that these CXCL12-specific miRNAs are transported from BM stroma to BC cells via gap junctions, leading to reduced CXCL12 levels and decreased proliferation. Stroma-derived exosomes containing miRNAs also contributed to BC cell quiescence, although to a lesser degree than miRNAs transmitted via gap junctions. This study shows that the transfer of miRNAs from BM stroma to BC cells might play a role in the dormancy of BM metastases. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: Particle analysis
None
EV110045 1/1 Escherichia coli Bacteria (d)(U)C
DG
Filtration
Kim SH 2011 11%

Study summary

Full title
All authors
Kim SH, Lee YH, Lee SH, Lee SR, Huh JW, Kim SU, Chang KT
Journal
FEMS Immunol Med Microbiol
Abstract
Hemolytic uremic syndrome (HUS) is characterized by acute renal failure in children and is typically (show more...)Hemolytic uremic syndrome (HUS) is characterized by acute renal failure in children and is typically complicated with thrombocytopenia and hemolytic anemia. Although mouse models of HUS have been evaluated using Shiga toxin (STx) combined with or without lipopolysaccharide (LPS), no HUS model has been tested using purified outer membrane vesicles (OMVs) from STx-producing Escherichia coli (STEC) O157:H7. Accordingly, we investigated whether OMVs of STEC O157:H7 conveying STx2 and LPS can cause HUS-like symptoms in mice inoculated intraperitoneally. Three types of OMVs differing in LPS acylation status and STx2 amount were used to compare their ability to induce HUS-like symptoms. Native OMVs (nOMV) with fully hexa-acylated LPS caused HUS-like symptoms at 72-96 h after dually divided injections of 1 ?g nOMV per animal. However, elevated doses of modified OMVs (mOMV) carrying mainly penta-acylated LPS were required to induce similar HUS signs. Moreover, mitomycin-C-induced OMVs (mcOMV) that were enriched with STx2 induced HUS-like symptoms similar to those of nOMV at the same dose. These results suggest that the OMVs of STEC O157:H7 potentiated with STx2 and fully hexa-acylated LPS can be utilized for inducing HUS-like symptoms in mice and could be the causative material involved in the development of HUS. (hide)
EV-METRIC
11% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Filtration
Protein markers
EV: STx2/ PAL
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Escherichia coli
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Density gradient
Only used for validation of main results
Yes
Highest density fraction
2
Orientation
Bottom-up
Speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
STx2/ PAL
ELISA
Antibody details provided?
No
Detected EV-associated proteins
STx2/ PAL
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110044 1/1 Homo sapiens NAY (d)(U)C Khan S 2011 11%

Study summary

Full title
All authors
Khan S, Jutzy JM, Aspe JR, McGregor DW, Neidigh JW, Wall NR
Journal
Apoptosis
Abstract
Inhibitor of apoptosis (IAP) and Heat shock proteins (HSPs) provide assistance in protecting cells f (show more...)Inhibitor of apoptosis (IAP) and Heat shock proteins (HSPs) provide assistance in protecting cells from stresses of hypoxia, imbalanced pH, and altered metabolic and redox states commonly found in the microenvironmental mixture of tumor and nontumor cells. HSPs are upregulated, cell-surface displayed and released extracellularly in some types of tumors, a finding that until now was not shared by members of the IAP family. The IAP Survivin has been implicated in apoptosis inhibition and the regulation of mitosis in cancer cells. Survivin exists in a number of subcellular locations such as the mitochondria, cytoplasm, nucleus, and most recently, the extracellular space. Our previous work showing that extracellular survivin was able to enhance cellular proliferation, survival and tumor cell invasion provides evidence that Survivin might be secreted via an unidentified exocytotic pathway. In the present study, we describe for the first time the exosome-release of Survivin to the extracellular space both basally and after proton irradiation-induced stress. To examine whether exosomes contributed to Survivin release from cancer cells, exosomes were purified from HeLa cervical carcinoma cells and exosome quantity and Survivin content were determined. We demonstrate that although proton irradiation does not influence the exosomal secretory rate, the Survivin content of exosomes isolated from HeLa cells treated with a sublethal dose of proton irradiation (3 Gy) is significantly higher than control. These data identify a novel secretory pathway by which Survivin can be actively released from cells in both the basal and stress-induced state. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: HSP90/ LAMP1/ HSP70/ AChE/ MHC2/ CD9
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
900
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9/ HSP90/ HSP70/ AChE/ MHC2/ LAMP1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AChE/ MHC2/ LAMP1
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
EM
EM-type
immune EM
EM protein
HSP70
Image type
Close-up
EV110095 1/1 Homo sapiens NAY (d)(U)C
DC
Filtration
Hedlund M 2011 11%

Study summary

Full title
All authors
Hedlund M, Nagaeva O, Kargl D, Baranov V, Mincheva-Nilsson L
Journal
PLoS One
Abstract
Immune evasion from NK surveillance related to inadequate NK-cell function has been suggested as an (show more...)Immune evasion from NK surveillance related to inadequate NK-cell function has been suggested as an explanation of the high incidence of relapse and fatal outcome of many blood malignancies. In this report we have used Jurkat and Raji cell lines as a model for studies of the NKG2D receptor-ligand system in T-and B cell leukemia/lymphoma. Using real-time quantitative RT-PCR and immunoflow cytometry we show that Jurkat and Raji cells constitutively express mRNA and protein for the stress-inducible NKG2D ligands MICA/B and ULBP1 and 2, and up-regulate the expression in a cell-line specific and stress-specific manner. Furthermore, we revealed by electron microscopy, immunoflow cytometry and western blot that these ligands were expressed and secreted on exosomes, nanometer-sized microvesicles of endosomal origin. Acting as a decoy, the NKG2D ligand-bearing exosomes downregulate the in vitro NKG2D receptor-mediated cytotoxicity and thus impair NK-cell function. Interestingly, thermal and oxidative stress enhanced the exosome secretion generating more soluble NKG2D ligands that aggravated the impairment of the cytotoxic response. Taken together, our results might partly explain the clinically observed NK-cell dysfunction in patients suffering from leukemia/lymphoma. The adverse effect of thermal and oxidative stress, enhancing the release of immunosuppressive exosomes, should be considered when cytostatic and hyperthermal anti-cancer therapies are designed. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Filtration
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110042 1/1 Homo sapiens NAY (d)(U)C
DG
Hasegawa H 2011 11%

Study summary

Full title
All authors
Hasegawa H, Thomas HJ, Schooley K, Born TL
Journal
Cytokine
Abstract
Although IL-32 has been shown to be induced under various pathological conditions, a detailed unders (show more...)Although IL-32 has been shown to be induced under various pathological conditions, a detailed understanding of native IL-32 intracellular distribution and mechanism of release from cells has not been reported. We examined the expression of IL-32 in the intestinal epithelial cell line HT-29 following TNF? and IFN? co-stimulation. The subcellular localization of induced IL-32 was associated with the membrane of lipid droplet-like structures and vacuolar structures that co-localized with markers of endosomes and lysosomes. Prolonged co-stimulation resulted in cell death and appearance of IL-32 in the culture medium. IL-32 released from co-stimulated HT-29 cells was found in a detergent-sensitive particulate fraction, and in a step density gradient the IL-32 particulate was buoyant, suggesting association with a membrane-bound vesicle. Upon Triton X-114 partitioning, most of the IL-32 partitioned to the detergent phase, suggesting hydrophobic characteristics. When IL-32-containing vesicles were subjected to protease K treatment, a protease resistant ?12kDa fragment was generated from ?24kDa IL-32. We propose that under these conditions, native IL-32 is released via a non-classical secretory route perhaps involving multi-vesicular bodies and exosomes. Demonstration of membrane association for both intracellular and released IL-32 suggests this unique cytokine may have a complex biosynthetic pathway and mechanism of action. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: LAMP1
non-EV:
Proteomics
no
Show all info
Study aim
Other/IL-32 release
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
45
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
2
Highest density fraction
50
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
LAMP1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
LAMP1
Characterization: Particle analysis
None
EV110092 1/1 Homo sapiens NAY (d)(U)C
Filtration
Gan X 2011 11%

Study summary

Full title
All authors
Gan X, Gould SJ
Journal
Mol Biol Cell
Abstract
Animal cells bud exosomes and microvesicles (EMVs) from endosome and plasma membranes. The combinati (show more...)Animal cells bud exosomes and microvesicles (EMVs) from endosome and plasma membranes. The combination of higher-order oligomerization and plasma membrane binding is a positive budding signal that targets diverse proteins into EMVs and retrovirus particles. Here we describe an inhibitory budding signal (IBS) from the human immunodeficiency virus (HIV) Gag protein. This IBS was identified in the spacer peptide 2 (SP2) domain of Gag, is activated by C-terminal exposure of SP2, and mediates the severe budding defect of p6-deficient and PTAP-deficient strains of HIV. This IBS also impairs the budding of CD63 and several other viral and nonviral EMV proteins. The IBS does not prevent cargo delivery to the plasma membrane, a major site of EMV and virus budding. However, the IBS does inhibit an interaction between EMV cargo proteins and VPS4B, a component of the endosomal sorting complexes required for transport (ESCRT) machinery. Taken together, these results demonstrate that inhibitory signals can block protein and virus budding, raise the possibility that the ESCRT machinery plays a role in EMV biogenesis, and shed new light on the role of the p6 domain and PTAP motif in the biogenesis of HIV particles. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes / microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD81/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ CD81
Characterization: Particle analysis
None
EV110037 1/1 Homo sapiens NAY (d)(U)C
DG
Escrevente C 2011 11%

Study summary

Full title
All authors
Escrevente C, Keller S, Altevogt P, Costa J
Journal
BMC Cancer
Abstract
BACKGROUND: Exosomes consist of membrane vesicles that are secreted by several cell types, including (show more...)BACKGROUND: Exosomes consist of membrane vesicles that are secreted by several cell types, including tumors and have been found in biological fluids. Exosomes interact with other cells and may serve as vehicles for the transfer of protein and RNA among cells. METHODS: SKOV3 exosomes were labelled with carboxyfluorescein diacetate succinimidyl-ester and collected by ultracentrifugation. Uptake of these vesicles, under different conditions, by the same cells from where they originated was monitored by immunofluorescence microscopy and flow cytometry analysis. Lectin analysis was performed to investigate the glycosylation properties of proteins from exosomes and cellular extracts. RESULTS: In this work, the ovarian carcinoma SKOV3 cell line has been shown to internalize exosomes from the same cells via several endocytic pathways that were strongly inhibited at 4°C, indicating their energy dependence. Partial colocalization with the endosome marker EEA1 and inhibition by chlorpromazine suggested the involvement of clathrin-dependent endocytosis. Furthermore, uptake inhibition in the presence of 5-ethyl-N-isopropyl amiloride, cytochalasin D and methyl-beta-cyclodextrin suggested the involvement of additional endocytic pathways. The uptake required proteins from the exosomes and from the cells since it was inhibited after proteinase K treatments. The exosomes were found to be enriched in specific mannose- and sialic acid-containing glycoproteins. Sialic acid removal caused a small but non-significant increase in uptake. Furthermore, the monosaccharides D-galactose, ?-L-fucose, ?-D-mannose, D-N-acetylglucosamine and the disaccharide ?-lactose reduced exosomes uptake to a comparable extent as the control D-glucose. CONCLUSIONS: In conclusion, exosomes are internalized by ovarian tumor cells via various endocytic pathways and proteins from exosomes and cells are required for uptake. On the other hand, exosomes are enriched in specific glycoproteins that may constitute exosome markers. This work contributes to the knowledge about the properties and dynamics of exosomes in cancer. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: CD9
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD9
Characterization: Particle analysis
None
EV110033 1/2 Homo sapiens NAY (d)(U)C Batista BS 2011 11%

Study summary

Full title
All authors
Batista BS, Eng WS, Pilobello KT, Hendricks-Muñoz KD, Mahal LK
Journal
J Proteome Res
Abstract
Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in i (show more...)Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression, and the spread of infectious agents. The biological functions of these small vesicles are dependent on their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, ?-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together, our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81/ CD63
non-EV:
Proteomics
no
Show all info
Study aim
Omics
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Detected EV-associated proteins
CD63/ CD81
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110032 1/1 Mus musculus NAY (d)(U)C Alvarez-Erviti L 2011 11%

Study summary

Full title
All authors
Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ
Journal
Nat Biotechnol
Abstract
To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic del (show more...)To realize the therapeutic potential of RNA drugs, efficient, tissue-specific and nonimmunogenic delivery technologies must be developed. Here we show that exosomes-endogenous nano-vesicles that transport RNAs and proteins-can deliver short interfering (si)RNA to the brain in mice. To reduce immunogenicity, we used self-derived dendritic cells for exosome production. Targeting was achieved by engineering the dendritic cells to express Lamp2b, an exosomal membrane protein, fused to the neuron-specific RVG peptide. Purified exosomes were loaded with exogenous siRNA by electroporation. Intravenously injected RVG-targeted exosomes delivered GAPDH siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting in a specific gene knockdown. Pre-exposure to RVG exosomes did not attenuate knockdown, and non-specific uptake in other tissues was not observed. The therapeutic potential of exosome-mediated siRNA delivery was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a therapeutic target in Alzheimer's disease, in wild-type mice. (hide)
EV-METRIC
11% (30th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: LAMP2
non-EV:
Proteomics
no
Show all info
Study aim
Technical
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
LAMP2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
LAMP2
Characterization: Particle analysis
NTA
EM
EM-type
transmission EM
Image type
Wide-field
EV220115 1/3 Homo sapiens Blood plasma IAF Tavoosidana G 2011 0%

Study summary

Full title
All authors
Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L, Wu D, Conze T, Ek P, Semjonow A, Eltze E, Larsson A, Landegren UD, Kamali-Moghaddam M
Journal
Proc Natl Acad Sci U S A
Abstract
Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and m (show more...)Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and malignant prostate acinar cells. It has been hypothesized that invasive growth of malignant prostate cells may cause these microvesicles, normally released into seminal fluid, to appear in interstitial space and therewith into peripheral circulation. The suitability of prostasomes as blood biomarkers in patients with prostate cancer was tested by using an expanded variant of the proximity ligation assay (PLA). We developed an extremely sensitive and specific assay (4PLA) for detection of complex target structures such as microvesicles in which the target is first captured via an immobilized antibody and subsequently detected by using four other antibodies with attached DNA strands. The requirement for coincident binding by five antibodies to generate an amplifiable reporter results in both increased specificity and sensitivity. The assay successfully detected significantly elevated levels of prostasomes in blood samples from patients with prostate cancer before radical prostatectomy, compared with controls and men with benign biopsy results. The medians for prostasome levels in blood plasma of patients with prostate cancer were 2.5 to sevenfold higher compared with control samples in two independent studies, and the assay also distinguished patients with high and medium prostatectomy Gleason scores (8/9 and 7, respectively) from those with low score (≤ 6), thus reflecting disease aggressiveness. This approach that enables detection of prostasomes in peripheral blood may be useful for early diagnosis and assessment of prognosis in organ-confined prostate cancer. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
prostasome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Immunoaffinity capture
Selected surface protein(s)
CD13
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220115 2/3 Homo sapiens Blood plasma IAF Tavoosidana G 2011 0%

Study summary

Full title
All authors
Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L, Wu D, Conze T, Ek P, Semjonow A, Eltze E, Larsson A, Landegren UD, Kamali-Moghaddam M
Journal
Proc Natl Acad Sci U S A
Abstract
Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and m (show more...)Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and malignant prostate acinar cells. It has been hypothesized that invasive growth of malignant prostate cells may cause these microvesicles, normally released into seminal fluid, to appear in interstitial space and therewith into peripheral circulation. The suitability of prostasomes as blood biomarkers in patients with prostate cancer was tested by using an expanded variant of the proximity ligation assay (PLA). We developed an extremely sensitive and specific assay (4PLA) for detection of complex target structures such as microvesicles in which the target is first captured via an immobilized antibody and subsequently detected by using four other antibodies with attached DNA strands. The requirement for coincident binding by five antibodies to generate an amplifiable reporter results in both increased specificity and sensitivity. The assay successfully detected significantly elevated levels of prostasomes in blood samples from patients with prostate cancer before radical prostatectomy, compared with controls and men with benign biopsy results. The medians for prostasome levels in blood plasma of patients with prostate cancer were 2.5 to sevenfold higher compared with control samples in two independent studies, and the assay also distinguished patients with high and medium prostatectomy Gleason scores (8/9 and 7, respectively) from those with low score (≤ 6), thus reflecting disease aggressiveness. This approach that enables detection of prostasomes in peripheral blood may be useful for early diagnosis and assessment of prognosis in organ-confined prostate cancer. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Prostate Cancer
Focus vesicles
prostasome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Immunoaffinity capture (non-commercial)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Immunoaffinity capture
Selected surface protein(s)
CD13
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV220115 3/3 Homo sapiens Blood plasma (d)(U)C
SEC (non-commercial)
Tavoosidana G 2011 0%

Study summary

Full title
All authors
Tavoosidana G, Ronquist G, Darmanis S, Yan J, Carlsson L, Wu D, Conze T, Ek P, Semjonow A, Eltze E, Larsson A, Landegren UD, Kamali-Moghaddam M
Journal
Proc Natl Acad Sci U S A
Abstract
Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and m (show more...)Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and malignant prostate acinar cells. It has been hypothesized that invasive growth of malignant prostate cells may cause these microvesicles, normally released into seminal fluid, to appear in interstitial space and therewith into peripheral circulation. The suitability of prostasomes as blood biomarkers in patients with prostate cancer was tested by using an expanded variant of the proximity ligation assay (PLA). We developed an extremely sensitive and specific assay (4PLA) for detection of complex target structures such as microvesicles in which the target is first captured via an immobilized antibody and subsequently detected by using four other antibodies with attached DNA strands. The requirement for coincident binding by five antibodies to generate an amplifiable reporter results in both increased specificity and sensitivity. The assay successfully detected significantly elevated levels of prostasomes in blood samples from patients with prostate cancer before radical prostatectomy, compared with controls and men with benign biopsy results. The medians for prostasome levels in blood plasma of patients with prostate cancer were 2.5 to sevenfold higher compared with control samples in two independent studies, and the assay also distinguished patients with high and medium prostatectomy Gleason scores (8/9 and 7, respectively) from those with low score (≤ 6), thus reflecting disease aggressiveness. This approach that enables detection of prostasomes in peripheral blood may be useful for early diagnosis and assessment of prognosis in organ-confined prostate cancer. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Prostate Cancer
Focus vesicles
prostasome
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Size-exclusion chromatography (non-commercial)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: speed (g)
100000
Filtration steps
Equal to or above 100,000 g and below 150,000 g
Other
Name other separation method
Size-exclusion chromatography (non-commercial)
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EV210471 1/4 Homo sapiens Primary medulloblastoma (d)(U)C
Filtration
Balaj L 2011 0%

Study summary

Full title
All authors
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J
Journal
Nat Commun
Abstract
Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. H (show more...)Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary medulloblastoma
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: speed (g)
110,000
Wash: volume per pellet (ml)
13
Wash: time (min)
70
Wash: speed (g)
110,000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Capillary electrophoresis (e.g. Bioanalyzer)/ Microarray
Database
No
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
RNase A
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-250
EV concentration
Yes
EV210471 2/4 Homo sapiens Melanoma (Yumel 0106) (d)(U)C
Filtration
Balaj L 2011 0%

Study summary

Full title
All authors
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J
Journal
Nat Commun
Abstract
Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. H (show more...)Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Melanoma (Yumel 0106)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: speed (g)
110,000
Wash: volume per pellet (ml)
13
Wash: time (min)
70
Wash: speed (g)
110,000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Capillary electrophoresis (e.g. Bioanalyzer)/ Microarray
Database
No
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
RNase H
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-210
EV concentration
Yes
EV210471 3/4 Homo sapiens Primary GBM (d)(U)C
Filtration
Balaj L 2011 0%

Study summary

Full title
All authors
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J
Journal
Nat Commun
Abstract
Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. H (show more...)Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Primary GBM
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: speed (g)
110,000
Wash: volume per pellet (ml)
13
Wash: time (min)
70
Wash: speed (g)
110,000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Capillary electrophoresis (e.g. Bioanalyzer)/ Microarray
Database
No
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
RNase A
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-300
EV concentration
Yes
EV210471 4/4 Homo sapiens Fibrolast (HF19/ HF27) (d)(U)C
Filtration
Balaj L 2011 0%

Study summary

Full title
All authors
Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J
Journal
Nat Commun
Abstract
Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. H (show more...)Tumour cells release an abundance of microvesicles containing a selected set of proteins and RNAs. Here, we show that tumour microvesicles also carry DNA, which reflects the genetic status of the tumour, including amplification of the oncogene c-Myc. We also find amplified c-Myc in serum microvesicles from tumour-bearing mice. Further, we find remarkably high levels of retrotransposon RNA transcripts, especially for some human endogenous retroviruses, such as LINE-1 and Alu retrotransposon elements, in tumour microvesicles and these transposable elements could be transferred to normal cells. These findings expand the nucleic acid content of tumour microvesicles to include: elevated levels of specific coding and non-coding RNA and DNA, mutated and amplified oncogene sequences and transposable elements. Thus, tumour microvesicles contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Filtration
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
Fibrolast (HF19/ HF27)
EV-harvesting Medium
EV-depleted medium
Preparation of EDS
overnight (16h) at >=100,000g
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: speed (g)
110,000
Wash: volume per pellet (ml)
13
Wash: time (min)
70
Wash: speed (g)
110,000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
None
Protein Concentration Method
Not determined
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR/ Microarray/ Capillary electrophoresis (e.g. Bioanalyzer)
Database
No
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
RNase A
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-300
EV concentration
Yes
EV110123 1/1 Porphyromonas gingivalis Bacteria (d)(U)C Imayoshi R 2011 0%

Study summary

Full title
All authors
Imayoshi R, Cho T, Kaminishi H
Journal
Oral Dis
Abstract
OBJECTIVE: This experiment was carried out in order to prove the inducible nitric oxide synthase (iN (show more...)OBJECTIVE: This experiment was carried out in order to prove the inducible nitric oxide synthase (iNOS) expression and the nitric oxide (NO) production in mouse macrophage cells (RAW264) which were stimulated by vesicles released from Porphyromonas gingivalis, and discussed about the role of vesicles in advance periodontal diseases. MATERIALS AND METHODS: Production of NO(2) (-) in RAW264 cells was investigated after 0, 1, 3, 6 and 12h of stimulation with P. gingivalis vesicles. NO was analyzed by HPLC-based flow reactor system with Griess reagent. The cells stained by the enzyme-labeled antibody method, after being stimulated with vesicles for 12h. The iNOS proteins, which were expressed in RAW264 cells after 12h of stimulation with vesicles, were detected by western blot. RESULTS: When stimulated with vesicles from W83 and from ATCC33277, the RAW264 cells produced NO, but cell proteins that came in contact with the vesicles were degraded by protease activities in vesicles. When stimulated with vesicles from gingipain-deficient mutant strain KDP136, the RAW264 cells produced NO, but the quality was about 60%, compared with the vesicles from ATCC33277. CONCLUSION: The results suggest that vesicles are not only just a part of bacterial component, but also are a toxic complex of lipopolysaccharide and protease, and one of the putative virulence factor for periodontal diseases that continue inflammation and cause chronic conditions. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Porphyromonas gingivalis
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
40
Characterization: Particle analysis
None
EV110122 1/1 Acholeplasma laidlawii Bacteria (d)(U)C
Filtration
Chernov VM 2011 0%

Study summary

Full title
All authors
Chernov VM, Chernova OA, Mouzykantov AA, Efimova IR, Shaymardanova GF, Medvedeva ES, Trushin MV
Journal
ScientificWorldJournal
Abstract
Extracellular vesicle production is believed to be a ubiquitous process in bacteria, but the data on (show more...)Extracellular vesicle production is believed to be a ubiquitous process in bacteria, but the data on such a process in Mollicutes are absent. We report the isolation of ultramicroforms - extracellular vesicles from supernatants of Acholeplasma laidlawii PG8 (ubiquitous mycoplasma; the main contaminant of cell culture). Considering sizes, morphology, and ultrastructural organization, the ultramicroforms of A. laidlawii PG8 are similar to membrane vesicles of Gram-positive and Gram-negative bacteria. We demonstrate that A. laidlawii PG8 vesicles contain genetic material and proteins, and are mutagenic to lymphocytes of human peripheral blood. We show that Mycoplasma gallisepticum S6, the other mycoplasma, also produce similar structures, which suggests that shedding of the vesicles might be the common phenomenon in Mollicutes. We found that the action of stress conditions results in the intensive formation of ultramicroforms in mycoplasmas. The role of vesicular formation in mycoplasmas remains to be studied. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Other/Vesiculation in mycoplasma
Sample
Species
Acholeplasma laidlawii
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
180
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110121 1/1 Mus musculus NAY (d)(U)C Zeelenberg IS 2011 0%

Study summary

Full title
All authors
Zeelenberg IS, van Maren WW, Boissonnas A, Van Hout-Kuijer MA, Den Brok MH, Wagenaars JA, van der Schaaf A, Jansen EJ, Amigorena S, Théry C, Figdor CG, Adema GJ
Journal
J Immunol
Abstract
Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, (show more...)Effective antitumor immunotherapy requires the identification of suitable target Ags. Interestingly, many of the tumor Ags used in clinical trials are present in preparations of secreted tumor vesicles (exosomes). In this study, we compared T cell responses elicited by murine MCA101 fibrosarcoma tumors expressing a model Ag at different localizations within the tumor cell in association with secreted vesicles (exosomes), as a nonsecreted cell-associated protein, or as secreted soluble protein. Remarkably, we demonstrated that only the tumor-secreting vesicle-bound Ag elicited a strong Ag-specific CD8(+) T cell response, CD4(+) T cell help, Ag-specific Abs, and a decrease in the percentage of immunosuppressive regulatory T cells in the tumor. Moreover, in a therapeutic tumor model of cryoablation, only in tumors secreting vesicle-bound Ag could Ag-specific CD8(+) T cells still be detected up to 16 d after therapy. We concluded that the localization of an Ag within the tumor codetermines whether a robust immunostimulatory response is elicited. In vivo, vesicle-bound Ag clearly skews toward a more immunogenic phenotype, whereas soluble or cell-associated Ag expression cannot prevent or even delay outgrowth and results in tumor tolerance. This may explain why particular immunotherapies based on these vesicle-bound tumor Ags are potentially successful. Therefore, we conclude that this study may have significant implications in the discovery of new tumor Ags suitable for immunotherapy and that their location should be taken into account to ensure a strong antitumor immune response. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Wash: volume per pellet (ml)
1
Characterization: Particle analysis
None
EV110118 1/1 Homo sapiens NAY (d)(U)C
Filtration
van den Boorn JG 2011 0%

Study summary

Full title
All authors
van den Boorn JG, Picavet DI, van Swieten PF, van Veen HA, Konijnenberg D, van Veelen PA, van Capel T, Jong EC, Reits EA, Drijfhout JW, Bos JD, Melief CJ, Luiten RM
Journal
J Invest Dermatol
Abstract
In this study, we report the previously unknown mechanism of inducing robust anti-melanoma immunity (show more...)In this study, we report the previously unknown mechanism of inducing robust anti-melanoma immunity by the vitiligo-inducing compound monobenzone. We show monobenzone to increase melanocyte and melanoma cell immunogenicity by forming quinone-haptens to the tyrosinase protein and by inducing the release of tyrosinase- and melanoma antigen recognized by T cells-1 (MART-1)-containing CD63+ exosomes following melanosome oxidative stress induction. Monobenzone further augments the processing and shedding of melanocyte-differentiation antigens by inducing melanosome autophagy and enhanced tyrosinase ubiquitination, ultimately activating dendritic cells, which induced cytotoxic human melanoma-reactive T cells. These T cells effectively eradicate melanoma in vivo, as we have reported previously. Monobenzone thereby represents a promising and readily applicable compound for immunotherapy in melanoma patients. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Other/Effect of monobenzone treatment on autoimmunity
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV110067 1/3 Homo sapiens Milk (d)(U)C Vallhov H 2011 0%

Study summary

Full title
All authors
Vallhov H, Gutzeit C, Johansson SM, Nagy N, Paul M, Li Q, Friend S, George TC, Klein E, Scheynius A, Gabrielsson S
Journal
J Immunol
Abstract
Exosomes are nano-sized membrane vesicles released from a wide variety of cells, formed in endosomes (show more...)Exosomes are nano-sized membrane vesicles released from a wide variety of cells, formed in endosomes by inward budding of the endosomal limiting membrane. They have immune stimulatory-, inhibitory-, or tolerance-inducing effects, depending on their cellular origin, which is why they are investigated for use in vaccine and immune therapeutic strategies. In this study, we explored whether exosomes of different origins and functions can selectively target different immune cells in human peripheral blood. Flow cytometry, confocal laser scanning microscopy, and multispectral imaging flow cytometry (ImageStream) revealed that exosomes derived from human monocyte-derived dendritic cells and breast milk preferably associated with monocytes. In contrast, exosomes from an EBV-transformed B cell line (LCL1) preferentially targeted B cells. This was not observed for an EBV(-) B cell line (BJAB). Electron microscopy, size-distribution analysis (NanoSight), and a cord blood transformation assay excluded the presence of virions in our LCL1 exosome preparations. The interaction between LCL1-derived exosomes and peripheral blood B cells could be blocked efficiently by anti-CD21 or anti-gp350, indicating an interaction between CD21 on B cells and the EBV glycoprotein gp350 on exosomes. The targeting of LCL1-derived exosomes through gp350-CD21 interaction strongly inhibited EBV infection in B cells isolated from umbilical cord blood, suggesting a protective role for exosomes in regulating EBV infection. Our finding also suggests that exosome-based vaccines can be engineered for specific B cell targeting by inducing gp350 expression. (hide)
EV-METRIC
0% (median: 33% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: MHC2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70-90
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
MHC2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MHC2
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
None
EV110079 1/2 Homo sapiens NAY (d)(U)C Turchinovich A 2011 0%

Study summary

Full title
All authors
Turchinovich A, Weiz L, Langheinz A, Burwinkel B
Journal
Nucleic Acids Res
Abstract
MicroRNAs (miRNAs), a class of post-transcriptional gene expression regulators, have recently been d (show more...)MicroRNAs (miRNAs), a class of post-transcriptional gene expression regulators, have recently been detected in human body fluids, including peripheral blood plasma as extracellular nuclease resistant entities. However, the origin and function of extracellular circulating miRNA remain essentially unknown. Here, we confirmed that circulating mature miRNA in contrast to mRNA or snRNA is strikingly stable in blood plasma and cell culture media. Furthermore, we found that most miRNA in plasma and cell culture media completely passed through 0.22 µm filters but remained in the supernatant after ultracentrifugation at 110 000g indicating the non-vesicular origin of the extracellular miRNA. Furthermore, western blot immunoassay revealed that extracellular miRNA ultrafiltrated together with the 96 kDa Ago2 protein, a part of RNA-induced silencing complex. Moreover, miRNAs in both blood plasma and cell culture media co-immunoprecipited with anti-Ago2 antibody in a detergent free environment. This is the first study to show that extracellular miRNAs are predominantly exosomes/microvesicles free and are associated with Ago proteins. We hypothesize that extracellular miRNAs are in the most part by-products of dead cells that remain in extracellular space due to the high stability of the Ago2 protein and Ago2-miRNA complex. Nevertheless, our data does not reject the possibility that some miRNAs can be associated with exosomes. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Particle analysis
None
EV110064 1/2 Rattus norvegicus/rattus Urine (d)(U)C Street JM 2011 0%

Study summary

Full title
All authors
Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW
Journal
J Physiol
Abstract
Exosomes are vesicles released following fusion of endosomes with the plasma membrane. Urine contain (show more...)Exosomes are vesicles released following fusion of endosomes with the plasma membrane. Urine contains exosomes that are released from the entire length of the nephron and change in composition with kidney disease. Exosomes can shuttle information between non-renal cells via transfer of protein and RNA. In this study murine kidney collecting duct (mCCDC11) cells were used to demonstrate that exosomes can act as a signalling mechanism between cells. First, the release of exosomes by mCCDC11 cells was confirmed by multiple approaches. Following isopynic centrifugation, exosomal proteins flotillin-1 and TSG101 were identified in fractions consistent with exosomes. Electron microscopy demonstrated structures consistent in size and shape with exosomes. Exposure of mCCDC11 cells to the synthetic vasopressin analogue, desmopressin, did not affect exosomal flotillin-1 or TSG101 but increased aquaporin 2 (AQP2) in a dose- and time-dependent manner that was highly correlated with cellular AQP2 (exosomal AQP2 vs. cellular AQP2, Pearson correlation coefficient r = 0.93). To test whether the ratio of exosomal AQP2/flotillin-1 is under physiological control in vivo, rats were treated with desmopressin. The ratio of AQP2/flotillin-1 in the urinary exosome was significantly increased. Inter-cellular signalling by exosomes was demonstrated: exosomes from desmopressin-treated cells stimulated both AQP2 expression and water transport in untreated mCCDc11 cells (water flow across cells: control exosome treatment 52.8 ± 11 ?l cm(-2); AQP2-containing exosomes 77.4 ± 4 ?l cm(-2), P = 0.05, n = 4). In summary, the amount of AQP2 in exosomes released from collecting duct cells is physiologically regulated and exosomal AQP2 closely reflects cellular expression. Exosomes can transfer functional AQP2 between cells and this represents a novel physiological mechanism for cell-to-cell communication within the kidney. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Flotilin1/ AQP2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus/rattus
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotilin1/ AQP2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AQP2
Characterization: Particle analysis
None
EV110114 1/1 Homo sapiens NAY (d)(U)C
Filtration
Shen B 2011 0%

Study summary

Full title
All authors
Shen B, Wu N, Yang JM, Gould SJ
Journal
J Biol Chem
Abstract
Animal cells secrete small vesicles, otherwise known as exosomes and microvesicles (EMVs). A short, (show more...)Animal cells secrete small vesicles, otherwise known as exosomes and microvesicles (EMVs). A short, N-terminal acylation tag can target a highly oligomeric cytoplasmic protein, TyA, into secreted vesicles (Fang, Y., Wu, N., Gan, X., Yan, W., Morell, J. C., and Gould, S. J. (2007) PLoS Biol. 5, 1267-1283). However, it is not clear whether this is true for other membrane anchors or other highly oligomeric, cytoplasmic proteins. We show here that a variety of plasma membrane anchors can target TyA-GFP to sites of vesicle budding and into EMVs, including: (i) a myristoylation tag; (ii) a phosphatidylinositol-(4,5)-bisphosphate (PIP(2))-binding domain; (iii), a phosphatidylinositol-(3,4,5)-trisphosphate-binding domain; (iv) a prenylation/palmitoylation tag, and (v) a type-1 plasma membrane protein, CD43. However, the relative budding efficiency induced by these plasma membrane anchors varied over a 10-fold range, from 100% of control (AcylTyA-GFP) for the myristoylation tag and PIP(2)-binding domain, to one-third or less for the others, respectively. Targeting TyA-GFP to endosome membranes by fusion to a phosphatidylinositol 3-phosphate-binding domain induced only a slight budding of TyA-GFP, ?2% of control, and no budding was observed when TyA-GFP was targeted to Golgi membranes via a phosphatidylinositol 4-phosphate-binding domain. We also found that a plasma membrane anchor can target two other highly oligomeric, cytoplasmic proteins to EMVs. These observations support the hypothesis that plasma membrane anchors can target highly oligomeric, cytoplasmic proteins to EMVs. Our data also provide additional parallels between EMV biogenesis and retrovirus budding, as the anchors that induced the greatest budding of TyA-GFP are the same as those that mediate retrovirus budding. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes / microvesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
None
EV110113 1/1 Homo sapiens NAY (d)(U)C Shelton MN 2011 0%

Study summary

Full title
All authors
Shelton MN, Huang MB, Ali SA, Powell MD, Bond VC
Journal
J Virol
Abstract
Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infecte (show more...)Nef is secreted from infected cells in exosomes and is found in abundance in the sera of HIV-infected individuals. Secreted exosomal Nef (exNef) induces apoptosis in uninfected CD4? T cells and may be a key component of HIV pathogenesis. The exosomal pathway has been implicated in HIV-1 virus release, suggesting a possible link between these two viral processes. However, the underlying mechanisms and cellular components of exNef secretion have not been elucidated. We have previously described a Nef motif, the secretion modification region (SMR; amino acids 66 to 70), that is required for exNef secretion. In silico modeling data suggest that this motif can form a putative binding pocket. We hypothesized that the Nef SMR binds a cellular protein involved in protein trafficking and that inhibition of this interaction would abrogate exNef secretion. By using tandem mass spectrometry and coimmunoprecipitation with a novel SMR-based peptide (SMRwt) that blocks exNef secretion and HIV-1 virus release, we identified mortalin as an SMR-specific cellular protein. A second set of coimmunoprecipitation experiments with full-length Nef confirmed that mortalin interacts with Nef via Nef's SMR motif and that this interaction is disrupted by the SMRwt peptide. Overexpression and microRNA knockdown of mortalin revealed a positive correlation between exNef secretion levels and mortalin protein expression. Using antibody inhibition we demonstrated that the Nef/mortalin interaction is necessary for exNef secretion. Taken together, this work constitutes a significant step in understanding the underlying mechanism of exNef secretion, identifies a novel host-pathogen interaction, and introduces an HIV-derived peptide with antiviral properties. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Between 50,000 g and 100,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Particle analysis
None
EV110112 1/1 Homo sapiens NAY (d)(U)C
UF
Sakwe AM 2011 0%

Study summary

Full title
All authors
Sakwe AM, Koumangoye R, Guillory B, Ochieng J
Journal
Exp Cell Res
Abstract
The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular (show more...)The interaction of annexin A6 (AnxA6) with membrane phospholipids and either specific extracellular matrix (ECM) components or F-actin suggests that it may influence cellular processes associated with rapid plasma membrane reorganization such as cell adhesion and motility. Here, we examined the putative roles of AnxA6 in adhesion-related cellular processes that contribute to breast cancer progression. We show that breast cancer cells secrete annexins via the exosomal pathway and that the secreted annexins are predominantly cell surface-associated. Depletion of AnxA6 in the invasive BT-549 breast cancer cells is accompanied by enhanced anchorage-independent cell growth but cell-cell cohesion, cell adhesion/spreading onto collagen type IV or fetuin-A, cell motility and invasiveness were strongly inhibited. To explain the loss in adhesion/motility, we show that vinculin-based focal adhesions in the AnxA6-depleted BT-549 cells are elongated and randomly distributed. These focal contacts are also functionally defective because the activation of focal adhesion kinase and the phosphoinositide-3 kinase/Akt pathway were strongly inhibited while the MAP kinase pathway remained constitutively active. Compared with normal human breast tissues, reduced AnxA6 expression in breast carcinoma tissues correlates with enhanced cell proliferation. Together this suggests that reduced AnxA6 expression contributes to breast cancer progression by promoting the loss of functional cell-cell and/or cell-ECM contacts and anchorage-independent cell proliferation. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
UF
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Other/Annexin A6-mediated adhesion
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
None
EV110057 1/1 Homo sapiens NAY Filtration
UF
Rountree RB 2011 0%

Study summary

Full title
All authors
Rountree RB, Mandl SJ, Nachtwey JM, Dalpozzo K, Do L, Lombardo JR, Schoonmaker PL, Brinkmann K, Dirmeier U, Laus R, Delcayre A
Journal
Cancer Res
Abstract
MVA-BN-PRO (BN ImmunoTherapeutics) is a candidate immunotherapy product for the treatment of prostat (show more...)MVA-BN-PRO (BN ImmunoTherapeutics) is a candidate immunotherapy product for the treatment of prostate cancer. It encodes 2 tumor-associated antigens, prostate-specific antigen (PSA), and prostatic acid phosphatase (PAP), and is derived from the highly attenuated modified vaccinia Ankara (MVA) virus stock known as MVA-BN. Past work has shown that the immunogenicity of antigens can be improved by targeting their localization to exosomes, which are small, 50- to 100-nm diameter vesicles secreted by most cell types. Exosome targeting is achieved by fusing the antigen to the C1C2 domain of the lactadherin protein. To test whether exosome targeting would improve the immunogenicity of PSA and PAP, 2 additional versions of MVA-BN-PRO were produced, targeting either PSA (MVA-BN-PSA-C1C2) or PAP (MVA-BN-PAP-C1C2) to exosomes, while leaving the second transgene untargeted. Treatment of mice with MVA-BN-PAP-C1C2 led to a striking increase in the immune response against PAP. Anti-PAP antibody titers developed more rapidly and reached levels that were 10- to 100-fold higher than those for mice treated with MVA-BN-PRO. Furthermore, treatment with MVA-BN-PAP-C1C2 increased the frequency of PAP-specific T cells 5-fold compared with mice treated with MVA-BN-PRO. These improvements translated into a greater frequency of tumor rejection in a PAP-expressing solid tumor model. Likewise, treatment with MVA-BN-PSA-C1C2 increased the antigenicity of PSA compared with treatment with MVA-BN-PRO and resulted in a trend of improved antitumor efficacy in a PSA-expressing tumor model. These experiments confirm that targeting antigen localization to exosomes is a viable approach for improving the therapeutic potential of MVA-BN-PRO in humans. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Filtration
UF
Protein markers
EV: CD81/ MHC1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
Filtration steps
> 0.45 µm,
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
MHC1
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD81/ MHC1
Characterization: Particle analysis
None
EV110111 1/1 Homo sapiens Urine (d)(U)C Rennings AJ 2011 0%

Study summary

Full title
All authors
Rennings AJ, Russel FG, Li Y, Deen PM, Masereeuw R, Tack CJ, Smits P
Journal
Clin Pharmacol Ther
Abstract
Thiazolidinediones (TZDs) are associated with fluid retention that has been suggested to be resistan (show more...)Thiazolidinediones (TZDs) are associated with fluid retention that has been suggested to be resistant to treatment with loop diuretics. This resistance is thought to be caused by upregulation of renal epithelial sodium channels (ENaCs). In this study, we tested whether these mechanisms are of clinical significance. We conducted a well-controlled study in 12 insulin-resistant nondiabetic participants, who received treatment for 9 weeks with either rosiglitazone at a dosage of 4 mg b.i.d. or placebo. The aim of the study was to investigate whether upregulation of ENaCs by rosiglitazone reduces furosemide's natriuretic response and enhances the response to the ENaC inhibitor amiloride. The natriuretic response to furosemide and amiloride and the amount of ?-ENaC in urinary exosomes were quantified. Rosiglitazone neither reduced furosemide-induced natriuresis nor changed furosemide's concentration-effect curve. Furthermore, rosiglitazone did not change either amiloride-induced natriuresis nor the amount of urinary ?-ENaC. This study challenges previous findings regarding TZD-related ENaC upregulation and suggests that TZD-induced fluid retention should respond normally to loop diuretics. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Alpha-ENaC
non-EV:
Proteomics
no
Show all info
Study aim
Other/alteration of diurectic response after administration of rosiglitazone
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alpha-ENaC
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Alpha-ENaC
Characterization: Particle analysis
None
EV110110 1/1 Homo sapiens NAY (d)(U)C
Filtration
UF
Ren WN 2011 0%

Study summary

Full title
All authors
Ren WN, Chang CK, Fan HH, Guo F, Ren YN, Yang J, Guo J, Li X
Journal
J Immunoassay Immunochem
Abstract
To improve its antitumor effect, we used human leukocyte antigen -A2 (HLA-A2)-positive human dendrit (show more...)To improve its antitumor effect, we used human leukocyte antigen -A2 (HLA-A2)-positive human dendritic cell (DC)-derived DEXs (DC-derived exosomes) to support NY-ESO-1 antigen and polyI:C, with the aim of increasing the proliferation of specific cytotoxic T lymphocytes (CTL) in transgenic mice. Mature dendritic cells derived from peripheral blood mononuclear cells (PBMC) were isolated from the blood of healthy adults with positive HLA-2A. Using centrifuge and membrane ultrafiltration, EXO (exosomes) were extracted from the supernatant of DCs secretions. Transgenic C57 mice were immunized with human-derived tumor testis antigen NY-ESO-1/EXO, with or without polyI:C. Mice were sacrificed four weeks after immunization, and spleen cells were isolated and tested for function. The experiments included antigen-specific CTL proliferation, as tested by dimerization and antitumor effects for K562 cells as well as melanoma, tested at different ratios of effected cells:target cells (0:1, 10:1, 50:1, and 100:1). Dimerization experiments indicated that the effect of DEX/TSA (tumor specific antigens) + PolyI:C was 2.36 ± 1.10% and the control was 0.38 ± 0.31%, while the effect of DEX/TSA was 1.97 ± 0.63% and the control was 0.36 ± 0.07%. Antitumor effects by DEX/TSA: PolyI:C for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 11.14 ± 1.36%, 14.17 ± 0.62%, 15.71 ± 2.48%, and 24.31 ± 2.91%, respectively, for K562 cells. The antitumor effects for DEX/TSA for the cell ratios of 0:1, 10:1, 50:1, and 100:1 were 12.23 ± 2.25%, 13.10 ± 1.57%, 15.27 ± 2.93%, and 19.87 ± 2.72%, respectively, for K562 cells. With ratios of 10:1 and 100:1, the antitumor effects of DEX/TSA + PolyI:C were better than for the DEX/TSA group (P < 0.05). However, higher ratios of effecter cells to target cells increased, and there were no significant improvements in antitumor effect for control cells. Combining PolyI:C with DEX/TSA derived from healthy human blood positive for HLA-A2 is a promising strategy for developing new subcellular antitumor vaccination. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
None
EV110109 1/1 Homo sapiens NAY (d)(U)C
DC
Qiu S 2011 0%

Study summary

Full title
All authors
Qiu S, Du Y, Duan X, Geng X, Xie J, Gao H, Yang PC
Journal
N Am J Med Sci
Abstract
BACKGROUND: The prevalence of chronic rhinitis is increasing rapidly; its pathogenesis is to be furt (show more...)BACKGROUND: The prevalence of chronic rhinitis is increasing rapidly; its pathogenesis is to be further understood; immune inflammation is one of the possible causative factors. Antigen specific CD8+ T cells play a critical role in the induction of chronic inflammation. AIMS: This study aimed to investigate the role of antigen specific CD8+ T cells in the pathogenesis of chronic atypical allergic rhinitis. MATERIAL AND METHODS: Nasal mucosal epithelial surface scratching samples were obtained from patients with chronic obstruction atypical allergic rhinitis. Exosomes were purified from the scratching samples and examined by immune gold electron microscopy. The effect of exosomes on modulating dendritic cell's properties, the effect of exosome-pulsed dendritic cells on naïve T cell differentiation and the antigen specific CD8+ T cell activation were observed by cell culture models. RESULTS: Exosomes purified from patients with chronic atypical allergic rhinitis carried microbial products, Staphylococcal enterotoxin B (SEB), and airborne antigen, Derp1. Dendritic cells pulsed by SEB/Derp1-carrying exosomes showed high levels of CD80, CD86 and the major histocompatibility class I (MHCI). Exosome-pulsed dendritic cells could induce the naïve CD3+ T cells to differentiate into CD8+ T cells. Upon the exposure to a specific antigen, the CD8+ T cells released granzyme B and perforin; more than 30% antigen specific CD8+ T cells proliferated. CONCLUSIONS: Antigen specific CD8+ T cells play an important role in the pathogenesis of chronic obstruction atypical allergic rhinitis. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
EV110108 1/1 Homo sapiens NAY (d)(U)C
DC
Plazolles N 2011 0%

Study summary

Full title
All authors
Plazolles N, Humbert JM, Vachot L, Verrier B, Hocke C, Halary F
Journal
J Leukoc Biol
Abstract
DC-SIGN is a member of the C-type lectin family. Mainly expressed by myeloid DCs, it is involved in (show more...)DC-SIGN is a member of the C-type lectin family. Mainly expressed by myeloid DCs, it is involved in the capture and internalization of pathogens, including human CMV. Several transcripts have been identified, some of which code for putative soluble proteins. However, little is known about the regulation and the functional properties of such putative sDC-SIGN variants. To better understand how sDC-SIGN could be involved in CMV infection, we set out to characterize biochemical and functional properties of rDC-SIGN as well as naturally occurring sDC-SIGN. We first developed a specific, quantitative ELISA and then used it to detect the presence sDC-SIGN in in vitro-generated DC culture supernatants as cell-free secreted tetramers. Next, in correlation with their inflammatory status, we demonstrated the presence of sDC-SIGN in several human body fluids, including serum, joint fluids, and BALs. CMV infection of human tissues was also shown to promote sDC-SIGN release. Based on the analysis of the cytokine/chemokine content of sDC-SIGN culture supernatants, we identified IFN-? and CXCL8/IL-8 as inducers of sDC-SIGN production by MoDC. Finally, we demonstrated that sDC-SIGN was able to interact with CMV gB under native conditions, leading to a significant increase in MoDC CMV infection. Overall, our results confirm that sDC-SIGN, like its well-known, counterpart mDC-SIGN, may play a pivotal role in CMV-mediated pathogenesis. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DC
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Other/DC-secreted sDC-SIGN isoforms are not associated with exosomes
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
No
Characterization: Particle analysis
None
EV110107 1/1 Neisseria meningitidis Bacteria (d)(U)C
Filtration
UF
Pinto VB 2011 0%

Study summary

Full title
All authors
Pinto VB, Moran EE, Cruz F, Wang XM, Fridman A, Zollinger WD, Przysiecki CT, Burden R
Journal
Vaccine
Abstract
A trivalent native outer membrane vesicle vaccine that has potential to provide broad based protecti (show more...)A trivalent native outer membrane vesicle vaccine that has potential to provide broad based protection against Neisseria meningitidis serogroup B strains has been developed. Preliminary immunogenicity studies in mice showed that the vaccine was capable of inducing an effective broad based bactericidal antibody response against N. meningitidis serogroup B strains. These findings in mice have been repeated with a cGMP trivalent NOMV vaccine and extended to show that the bactericidal antibody response induced by the vaccine in mice is effective against strains belonging to serogroups C, Y, W135, X, and NadA-expressing serogroup A strains. Taken together these results suggest that this experimental vaccine may provide protection against both serogroup B and non-serogroup B N. meningitidis strains. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
OMV
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Neisseria meningitidis
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Filtration steps
0.22µm or 0.2µm
Characterization: Particle analysis
None
EV110105 1/2 Homo sapiens NAY (d)(U)C Neal CS 2011 0%

Study summary

Full title
All authors
Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JY, Gleadle JM
Journal
Nephrol Dial Transplant
Abstract
BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression, which have roles in rena (show more...)BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression, which have roles in renal development and disease. They exist in biological fluids including blood and urine and may have signalling roles and potential as disease biomarkers. METHODS: We measured the levels of miRNAs in patients with different stages of chronic kidney failure including those receiving maintenance haemodialysis treatment. RESULTS: In patients with severe chronic renal failure, circulating levels of total and specific miRNAs are reduced in comparison to patients with mild renal impairment or normal renal function. A strong correlation exists between detected circulating miRNAs and estimated glomerular filtration rate, and less strong correlations with other features of chronic kidney disease, such as anaemia and hyperparathyroidism. CONCLUSION: These findings have important implications for the use of circulating miRNAs as biomarkers in individuals with renal impairment and for the pathogenesis of uraemia. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: Particle analysis
None
EV110105 2/2 Homo sapiens Blood plasma (d)(U)C Neal CS 2011 0%

Study summary

Full title
All authors
Neal CS, Michael MZ, Pimlott LK, Yong TY, Li JY, Gleadle JM
Journal
Nephrol Dial Transplant
Abstract
BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression, which have roles in rena (show more...)BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression, which have roles in renal development and disease. They exist in biological fluids including blood and urine and may have signalling roles and potential as disease biomarkers. METHODS: We measured the levels of miRNAs in patients with different stages of chronic kidney failure including those receiving maintenance haemodialysis treatment. RESULTS: In patients with severe chronic renal failure, circulating levels of total and specific miRNAs are reduced in comparison to patients with mild renal impairment or normal renal function. A strong correlation exists between detected circulating miRNAs and estimated glomerular filtration rate, and less strong correlations with other features of chronic kidney disease, such as anaemia and hyperparathyroidism. CONCLUSION: These findings have important implications for the use of circulating miRNAs as biomarkers in individuals with renal impairment and for the pathogenesis of uraemia. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Characterization: Particle analysis
None
EV110027 1/2 Rattus norvegicus/rattus NAY (d)(U)C
Filtration
Lachenal G 2011 0%

Study summary

Full title
All authors
Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, Bodon G, Blot B, Haase G, Goldberg Y, Sadoul R
Journal
Mol Cell Neurosci
Abstract
Exosomes are microvesicles released into the extracellular medium upon fusion to the plasma membrane (show more...)Exosomes are microvesicles released into the extracellular medium upon fusion to the plasma membrane of endosomal intermediates called multivesicular bodies. They represent ways for discarding proteins and metabolites and also for intercellular transfer of proteins and RNAs. In the nervous system, it has been hypothesized that exosomes might be involved in the normal physiology of the synapse and possibly allow the trans-synaptic propagation of pathogenic proteins throughout the tissue. As a first step to validate this concept, we used biochemical and morphological approaches to demonstrate that mature cortical neurons in culture do indeed secrete exosomes. Using electron microscopy, we observed exosomes being released from somato-dendritic compartments. The endosomal origin of exosomes was demonstrated by showing that the C-terminal domain of tetanus toxin specifically endocytosed by neurons and accumulating inside multivesicular bodies, is released in the extracellular medium in association with exosomes. Finally, we found that exosomal release is modulated by glutamatergic synaptic activity, suggesting that this process might be part of normal synaptic physiology. Thus, our study paves the way towards the demonstration that exosomes take part in the physiology of the normal and pathological nervous system. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Protein markers
EV: Alix/ Flotilin1
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
50
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Alix/ Flotilin1
Characterization: Particle analysis
None
EV110100 1/1 Rattus norvegicus/rattus NAY (d)(U)C Kuwabara Y 2011 0%

Study summary

Full title
All authors
Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T
Journal
Circ Cardiovasc Genet
Abstract
BACKGROUND: Recently, elevation of circulating muscle-specific microRNA (miRNA) levels has been repo (show more...)BACKGROUND: Recently, elevation of circulating muscle-specific microRNA (miRNA) levels has been reported in patients with acute myocardial infarction. However, it is still unclear from which part of the myocardium or under what conditions miRNAs are released into circulating blood. The purpose of this study was to identify the source of elevated levels of circulating miRNAs and their function in cardiovascular diseases. METHODS AND RESULTS: Serum levels of miRNA (miR)-1 and miR-133a were increased significantly in patients not only with acute myocardial infarction but also with unstable angina pectoris and Takotsubo cardiomyopathy without elevation of serum creatine phosphokinase or cardiac troponin. MicroRNA microarray analysis of the heart from a mouse model of myocardial infarction indicated that the levels of miR-1, miR-133a, miR-208a, and miR-499 were significantly reduced in the infarcted myocardium. In situ hybridization of miR-133a also showed that miR-133a levels were very low in the infarcted and peri-infarcted myocardium. It has been shown that circulating miRNAs are localized inside exosomes, which are released after Ca(2+) stimulation. We stimulated H9c2 cardiomyoblasts with A23187 and measured miR-133a levels in the exosome fraction of the culture medium. A23187 induced a dose-dependent release of miR-133a, and significant elevation was observed only at concentrations where dead cells were detected. We also found that miR-133a-containing exosomes reduced the luciferase activity of 293FT cells transfected with an miR-133a sensor vector. CONCLUSIONS: These results suggest that elevated levels of circulating miR-133a in patients with cardiovascular diseases originate mainly from the injured myocardium. Circulating miR-133a can be used as a marker for cardiomyocyte death, and it may have functions in cardiovascular diseases. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Characterization: Particle analysis
None
EV110046 1/2 Homo sapiens Serum (d)(U)C Koumangoye RB 2011 0%

Study summary

Full title
All authors
Koumangoye RB, Sakwe AM, Goodwin JS, Patel T, Ochieng J
Journal
PLoS One
Abstract
Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abun (show more...)Exosomes are nano-vesicles secreted by a wide range of mammalian cell types. These vesicles are abundant in serum and other extracellular fluids and contain a large repertoire of proteins, mRNA and microRNA. Exosomes have been implicated in cell to cell communication, the transfer of infectious agents, and neurodegenerative diseases as well as tumor progression. However, the precise mechanisms by which they are internalized and/or secreted remain poorly understood. In order to follow their release and uptake in breast tumor cells in real time, cell-derived exosomes were tagged with green fluorescent protein (GFP)-CD63 while human serum exosomes were rhodamine isothiocynate-labeled. We show that detachment of adherent cells from various substrata induces a rapid and substantial secretion of exosomes, which then concentrate on the cell surfaces and mediate adhesion to various extracellular matrix proteins. We also demonstrate that disruption of lipid rafts with methyl-beta-cyclodextrin (M?CD) inhibits the internalization of exosomes and that annexins are essential for the exosomal uptake mechanisms. Taken together, these data suggest that cellular detachment is accompanied by significant release of exosomes while cellular adhesion and spreading are enhanced by rapid uptake and disposition of exosomes on the cell surface. (hide)
EV-METRIC
0% (median: 13% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Particle analysis
None
EV110099 1/2 Homo sapiens NAY (d)(U)C Kogure T 2011 0%

Study summary

Full title
All authors
Kogure T, Lin WL, Yan IK, Braconi C, Patel T
Journal
Hepatology
Abstract
Hepatocellular carcinoma (HCC) is characterized by a propensity for multifocality, growth by local s (show more...)Hepatocellular carcinoma (HCC) is characterized by a propensity for multifocality, growth by local spread, and dysregulation of multiple signaling pathways. These features may be determined by the tumoral microenvironment. The potential of tumor cells to modulate HCC growth and behavior by secreted proteins has been extensively studied. In contrast, the potential for genetic modulation is poorly understood. We investigated the role and involvement of tumor-derived nanovesicles capable of altering gene expression and characterized their ability to modulate cell signaling and biological effects in other cells. We show that HCC cells can produce nanovesicles and exosomes that differ in both RNA and protein content from their cells of origin. These can be taken up and internalized by other cells and can transmit a functional transgene. The microRNA (miRNA) content of these exosomes was examined, and a subset highly enriched within exosomes was identified. A combinatorial approach to identify potential targets identified transforming growth factor ? activated kinase-1 (TAK1) as the most likely candidate pathway that could be modulated by these miRNAs. Loss of TAK1 has been implicated in hepatocarcinogenesis and is a biologically plausible target for intercellular modulation. We show that HCC cell-derived exosomes can modulate TAK1 expression and associated signaling and enhance transformed cell growth in recipient cells.CONCLUSION: Exosome-mediated miRNA transfer is an important mechanism of intercellular communication in HCC cells. These observations identify a unique intercellular mechanism that could potentially contribute to local spread, intrahepatic metastases, or multifocal growth in HCC. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD63
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Flow cytometry specific beads
Antibody details provided?
No
Antibody dilution provided?
No
Selected surface protein(s)
Yes
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV110099 2/2 Homo sapiens NAY (d)(U)C Kogure T 2011 0%

Study summary

Full title
All authors
Kogure T, Lin WL, Yan IK, Braconi C, Patel T
Journal
Hepatology
Abstract
Hepatocellular carcinoma (HCC) is characterized by a propensity for multifocality, growth by local s (show more...)Hepatocellular carcinoma (HCC) is characterized by a propensity for multifocality, growth by local spread, and dysregulation of multiple signaling pathways. These features may be determined by the tumoral microenvironment. The potential of tumor cells to modulate HCC growth and behavior by secreted proteins has been extensively studied. In contrast, the potential for genetic modulation is poorly understood. We investigated the role and involvement of tumor-derived nanovesicles capable of altering gene expression and characterized their ability to modulate cell signaling and biological effects in other cells. We show that HCC cells can produce nanovesicles and exosomes that differ in both RNA and protein content from their cells of origin. These can be taken up and internalized by other cells and can transmit a functional transgene. The microRNA (miRNA) content of these exosomes was examined, and a subset highly enriched within exosomes was identified. A combinatorial approach to identify potential targets identified transforming growth factor ? activated kinase-1 (TAK1) as the most likely candidate pathway that could be modulated by these miRNAs. Loss of TAK1 has been implicated in hepatocarcinogenesis and is a biologically plausible target for intercellular modulation. We show that HCC cell-derived exosomes can modulate TAK1 expression and associated signaling and enhance transformed cell growth in recipient cells.CONCLUSION: Exosome-mediated miRNA transfer is an important mechanism of intercellular communication in HCC cells. These observations identify a unique intercellular mechanism that could potentially contribute to local spread, intrahepatic metastases, or multifocal growth in HCC. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Nano(-sized) vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Characterization: Particle analysis
None
EV110098 1/1 Homo sapiens Collagenase digest of osteoblast cells (d)(U)C Kawakubo A 2011 0%

Study summary

Full title
All authors
Kawakubo A, Matsunaga T, Ishizaki H, Yamada S, Hayashi Y
Journal
Microsc Res Tech
Abstract
BACKGROUND: Zinc (Zn) has a potent stimulatory effect on osteoblastic bone formation and an inhibito (show more...)BACKGROUND: Zinc (Zn) has a potent stimulatory effect on osteoblastic bone formation and an inhibitory effect on osteoclastic bone resorption. PURPOSE: The effect of Zn on the function of matrix vesicles (MVs) remains controversial. The purpose of this study was to investigate the effect of Zn on alkaline phosphatase (ALP) activity of osteoblasts and in the initial biological MVs-mediated mineral deposition. STUDY DESIGN: Osteoblasts were treated with varying concentrations of Zn dissolved in culture medium. After three, five, and seven days of culture, ALP activity was assayed. For the detection of a low level of calcium concentration in MVs, X-ray fluorescence (XRF) analyses were applied. The effect of Zn for the transformation of calcium phosphate was analyzed using a scanning electron microscope fitted with an energy dispersive X-ray microanalysis (EDX) system. RESULTS: The ALP activity of osteoblasts in culture medium supplemented with 1 × 10(-5) M of Zn was significantly increased at both five and seven days. XRF data demonstrated higher levels of calcium concentration over time in the Zn-supplemented group. EDX data showed that mineral deposits beginning on day 3 were transformed from whitlockite to calcium phosphate near hydroxyapatite, and that Zn accelerated this transformation. CONCLUSIONS: The proper concentration of Zn increased the ALP activity of osteoblasts after five and seven days of incubation. The present XRF and EDX data suggest that the increase of mineral deposition with Zn exposure for one to five days might be mediated by the activation of ALP and calcium-binding proteins. (hide)
EV-METRIC
0% (median: 0% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Collagenase digest of osteoblast cells
Sample origin
NAY
Focus vesicles
Matrix vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Other/Effect of Zinc on mineral deposition
Sample
Species
Homo sapiens
Sample Type
Collagenase digest of osteoblast cells
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
20
Characterization: Particle analysis
EM
EM-type
scanning EM
Image type
Wide-field
Report size (nm)
Not reported
EV110097 1/2 Staphylococcus aureus Bacteria (d)(U)C
Filtration
UF
Hong SW 2011 0%

Study summary

Full title
All authors
Hong SW, Kim MR, Lee EY, Kim JH, Kim YS, Jeon SG, Yang JM, Lee BJ, Pyun BY, Gho YS, Kim YK
Journal
Allergy
Abstract
BACKGROUND: Recently, we found that Staphylococcus aureus produces extracellular vesicles (EV) that (show more...)BACKGROUND: Recently, we found that Staphylococcus aureus produces extracellular vesicles (EV) that contain pathogenic proteins. Although S. aureus infection has been linked with atopic dermatitis (AD), the identities of the causative agents from S. aureus are controversial. We evaluated whether S. aureus-derived EV are causally related to the pathogenesis of AD. METHODS: Extracellular vesicles were isolated by the ultracentrifugation of S. aureus culture media. The EV were applied three times per week to tape-stripped mouse skin. Inflammation and immune dysfunction were evaluated 48 h after the final application in hairless mice. Extracellular vesicles-specific IgE levels were measured by ELISA in AD patients and healthy subjects. RESULTS: The in vitro application of S. aureus EV increased the production of pro-inflammatory mediators (IL-6, thymic stromal lymphopoietin, macrophage inflammatory protein-1?, and eotaxin) by dermal fibroblasts. The in vivo application of S. aureus EV after tape stripping caused epidermal thickening with infiltration of the dermis by mast cells and eosinophils in mice. These changes were associated with the enhanced cutaneous production of IL-4, IL-5, IFN-?, and IL-17. Interestingly, the serum levels of S. aureus EV-specific IgE were significantly increased in AD patients relative to healthy subjects. CONCLUSION: These results indicate that S. aureus EV induce AD-like inflammation in the skin and that S. aureus-derived EV are a novel diagnostic and therapeutic target for the control of AD. (hide)
EV-METRIC
0% (median: 14% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Bacteria
Sample origin
NAY
Focus vesicles
extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Protein markers
EV:
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Staphylococcus aureus
Sample Type
Bacteria
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
180
Filtration steps
0.45µm > x > 0.22µm, 0.22µm or 0.2µm
Characterization: Particle analysis
None
101 - 150 of 170 keyboard_arrow_leftkeyboard_arrow_right