Search > Results

You searched for: EV200145 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200145 2/3 Homo sapiens Blood plasma (d)(U)C Shomer, Einat 2016 12%

Study summary

Full title
All authors
Einat Shomer, Sarah Katzenell, Yaniv Zipori, Annie Rebibo-Sabbah, Benjamin Brenner, Anat Aharon
Journal
Thromb Res
Abstract
Introduction: Microvesicles including exosomes and microparticles, participate in the placental-mate (show more...)Introduction: Microvesicles including exosomes and microparticles, participate in the placental-maternal crosstalk in normal pregnancies and gestational vascular complications (GVC). Low molecular weight heparin (LMWH) is known to reduce the risk of placenta-mediated pregnancy complications. This study was aimed to characterize microvesicles of pregnant women receiving LMWH and explore microvesicle involvement in trophoblast and endothelial cell function. Materials and methods: Microvesicles were isolated from blood samples obtained from non-pregnant women, healthy pregnant women (HP) and pregnant woman treated with LMWH. Microvesicle protein contents were assessed by protein array and ELISA. Microvesicle effects on early stage trophoblasts, term trophoblasts and endothelial cell migration, angiogenesis and apoptosis were evaluated. Results: Microvesicles derived from the group treated with LMWH contained higher levels of several proangiogenic proteins compared to those of HP women. Exposure of endothelial cells to circulating microvesicles derived from HP and LMWH treated groups induced significantly higher cell migration and branch tube formation compared to untreated cells. The effect of microvesicles from HP- and LMWH groups on early-stage trophoblast migration was similar. Microvesicles derived from these two study groups significantly decreased early-stage trophoblast apoptosis, while microvesicles derived from the HP-group (but not from the LMWH-group) significantly increased the term trophoblast apoptosis (TUNEL assay) compared to untreated cells. Conclusion: Therapy with LMWH affects patients' microvesicle content, leading to normalization of invasion, angiogenesis activity and survival of endothelial and trophoblast cells in vitro. The effects of LMWH on microvesicles may point to an additional mechanism of heparin action in high-risk pregnancy. (hide)
EV-METRIC
12% (27th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Leptin/ Angiopoietin-1/ Angiopoietin-2/ VEGF-R2/ VEGF-R3/ PDGF-BB/ EGF/ Angiogenin/ uPAR/ PECAM-1/ MMP-9/ Angiostatin/ TIMP-1/ TIMP-2/ RANTES/ GM-CSF/ G-CSF/ GRO/ MCP-1/ IL-6/ IL-2/ IL-10/ TNF-alpha/ MMP-9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Not specified
Pelleting: speed (g)
18000
Characterization: Protein analysis
Protein Concentration Method
BCA
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MMP-9
Other 1
Human Angiogenesis Protein Antibody Array
Detected EV-associated proteins
Leptin/ Angiopoietin-1/ Angiopoietin-2/ VEGF-R2/ VEGF-R3/ PDGF-BB/ EGF/ Angiogenin/ uPAR/ PECAM-1/ MMP-9/ Angiostatin/ TIMP-1/ TIMP-2/ RANTES/ GM-CSF/ G-CSF/ GRO/ MCP-1/ IL-6/ IL-2/ IL-10/ TNF-alpha
Characterization: Lipid analysis
No
EV200145 3/3 Homo sapiens Blood plasma (d)(U)C Shomer, Einat 2016 12%

Study summary

Full title
All authors
Einat Shomer, Sarah Katzenell, Yaniv Zipori, Annie Rebibo-Sabbah, Benjamin Brenner, Anat Aharon
Journal
Thromb Res
Abstract
Introduction: Microvesicles including exosomes and microparticles, participate in the placental-mate (show more...)Introduction: Microvesicles including exosomes and microparticles, participate in the placental-maternal crosstalk in normal pregnancies and gestational vascular complications (GVC). Low molecular weight heparin (LMWH) is known to reduce the risk of placenta-mediated pregnancy complications. This study was aimed to characterize microvesicles of pregnant women receiving LMWH and explore microvesicle involvement in trophoblast and endothelial cell function. Materials and methods: Microvesicles were isolated from blood samples obtained from non-pregnant women, healthy pregnant women (HP) and pregnant woman treated with LMWH. Microvesicle protein contents were assessed by protein array and ELISA. Microvesicle effects on early stage trophoblasts, term trophoblasts and endothelial cell migration, angiogenesis and apoptosis were evaluated. Results: Microvesicles derived from the group treated with LMWH contained higher levels of several proangiogenic proteins compared to those of HP women. Exposure of endothelial cells to circulating microvesicles derived from HP and LMWH treated groups induced significantly higher cell migration and branch tube formation compared to untreated cells. The effect of microvesicles from HP- and LMWH groups on early-stage trophoblast migration was similar. Microvesicles derived from these two study groups significantly decreased early-stage trophoblast apoptosis, while microvesicles derived from the HP-group (but not from the LMWH-group) significantly increased the term trophoblast apoptosis (TUNEL assay) compared to untreated cells. Conclusion: Therapy with LMWH affects patients' microvesicle content, leading to normalization of invasion, angiogenesis activity and survival of endothelial and trophoblast cells in vitro. The effects of LMWH on microvesicles may point to an additional mechanism of heparin action in high-risk pregnancy. (hide)
EV-METRIC
12% (27th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Pregnant; low molecular weight heparin treated
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: Leptin/ Angiopoietin-1/ Angiopoietin-2/ VEGF-R2/ VEGF-R3/ PDGF-BB/ EGF/ Angiogenin/ uPAR/ PECAM-1/ MMP-9/ Angiostatin/ TIMP-1/ TIMP-2/ RANTES/ GM-CSF/ G-CSF/ GRO/ MCP-1/ IL-6/ IL-2/ IL-10/ TNF-alpha/ MMP-9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Not specified
Pelleting: speed (g)
18000
Characterization: Protein analysis
Protein Concentration Method
BCA
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MMP-9
Other 1
Human Angiogenesis Protein Antibody Array
Characterization: Lipid analysis
No
EV200145 1/3 Homo sapiens Blood plasma (d)(U)C Shomer, Einat 2016 0%

Study summary

Full title
All authors
Einat Shomer, Sarah Katzenell, Yaniv Zipori, Annie Rebibo-Sabbah, Benjamin Brenner, Anat Aharon
Journal
Thromb Res
Abstract
Introduction: Microvesicles including exosomes and microparticles, participate in the placental-mate (show more...)Introduction: Microvesicles including exosomes and microparticles, participate in the placental-maternal crosstalk in normal pregnancies and gestational vascular complications (GVC). Low molecular weight heparin (LMWH) is known to reduce the risk of placenta-mediated pregnancy complications. This study was aimed to characterize microvesicles of pregnant women receiving LMWH and explore microvesicle involvement in trophoblast and endothelial cell function. Materials and methods: Microvesicles were isolated from blood samples obtained from non-pregnant women, healthy pregnant women (HP) and pregnant woman treated with LMWH. Microvesicle protein contents were assessed by protein array and ELISA. Microvesicle effects on early stage trophoblasts, term trophoblasts and endothelial cell migration, angiogenesis and apoptosis were evaluated. Results: Microvesicles derived from the group treated with LMWH contained higher levels of several proangiogenic proteins compared to those of HP women. Exposure of endothelial cells to circulating microvesicles derived from HP and LMWH treated groups induced significantly higher cell migration and branch tube formation compared to untreated cells. The effect of microvesicles from HP- and LMWH groups on early-stage trophoblast migration was similar. Microvesicles derived from these two study groups significantly decreased early-stage trophoblast apoptosis, while microvesicles derived from the HP-group (but not from the LMWH-group) significantly increased the term trophoblast apoptosis (TUNEL assay) compared to untreated cells. Conclusion: Therapy with LMWH affects patients' microvesicle content, leading to normalization of invasion, angiogenesis activity and survival of endothelial and trophoblast cells in vitro. The effects of LMWH on microvesicles may point to an additional mechanism of heparin action in high-risk pregnancy. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
(shedding) microvesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(Differential) (ultra)centrifugation
Protein markers
EV: MMP-9
non-EV: None
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Pelleting: rotor type
Not specified
Pelleting: speed (g)
18000
Characterization: Protein analysis
Protein Concentration Method
BCA
ELISA
Antibody details provided?
No
Detected EV-associated proteins
MMP-9
Characterization: Lipid analysis
No
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200145
species
Homo sapiens
sample type
Blood plasma
condition
Pregnant
Pregnant
low molecular weight heparin treated
Control condition
separation protocol
dUC
dUC
dUC
Exp. nr.
2
3
1
EV-METRIC %
12
12
0