Search > Results

You searched for: EV200107 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200107 1/2 Homo sapiens Blood plasma SEC (non-commercial)
NeXosome elution reagent
David E Cantonwine 2016 17%

Study summary

Full title
All authors
David E Cantonwine, Zhen Zhang, Kevin Rosenblatt, Kevin S Goudy, Robert C Doss, Alan M Ezrin, Gail Page, Brian Brohman, Thomas F McElrath
Journal
Am J Obstetrics Gynecology
Abstract
Background: The analysis of circulating microparticles in pregnancy is of revolutionary potential be (show more...)Background: The analysis of circulating microparticles in pregnancy is of revolutionary potential because it represents an in vivo biopsy of active gestational tissues. Objective: We hypothesized that circulating microparticle signaling will differ in pregnancies that experience spontaneous preterm birth from those delivering at term and that these differences will be evident many weeks in advance of clinical presentation. Study design: Utilizing plasma specimens obtained between 10 and 12 weeks' gestation as part of a prospectively collected birth cohort in which pregnancy outcomes are independently validated by 2 board-certified maternal-fetal medicine physicians, 25 singleton cases of spontaneous preterm birth ≤ 34 weeks were matched by maternal age, race, and gestational age of sampling (±2 weeks) with 50 uncomplicated term deliveries. Circulating microparticles from these first-trimester specimens were isolated and analyzed by multiple reaction monitoring mass spectrometry for potential protein biomarkers following previous studies. Markers with robust univariate performance in correlating spontaneous preterm birth were further evaluated for their biological relevance via a combined functional profiling/pathway analysis and for multivariate performance. Results: Among the 132 proteins evaluated, 62 demonstrated robust power of detecting spontaneous preterm birth in a bootstrap receiver-operating characteristic curve analysis at a false discovery rate of < 20% estimated via label permutation. Differential dependency network analysis identified spontaneous preterm birth-associated coexpression patterns linked to biological processes of inflammation, wound healing, and the coagulation cascade. Linear modeling of spontaneous preterm birth using a multiplex of the candidate biomarkers with a fixed sensitivity of 80% exhibited a specificity of 83% with median area under the curve of 0.89. These results indicate a strong potential of multivariate model development for informative risk stratification. Conclusion: This project has identified functional proteomic factors with associated biological processes that are already unique in their expression profiles at 10-12 weeks among women who go on to deliver spontaneously ≤ 34 weeks. These changes, with further validation, will allow the stratification of patients at risk of spontaneous preterm birth before clinical presentation. (hide)
EV-METRIC
17% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Healthy pregnant
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Size-exclusion chromatography (non-commercial)
NeXosome elution reagent
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Size-exclusion chromatography
Total column volume (mL)
10mL
Sample volume/column (mL)
1mL
Resin type
2% agarose bead
Other
Name other separation method
NeXosome elution reagent
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
EV200107 2/2 Homo sapiens Blood plasma SEC (non-commercial)
NeXosome elution reagent
David E Cantonwine 2016 17%

Study summary

Full title
All authors
David E Cantonwine, Zhen Zhang, Kevin Rosenblatt, Kevin S Goudy, Robert C Doss, Alan M Ezrin, Gail Page, Brian Brohman, Thomas F McElrath
Journal
Am J Obstetrics Gynecology
Abstract
Background: The analysis of circulating microparticles in pregnancy is of revolutionary potential be (show more...)Background: The analysis of circulating microparticles in pregnancy is of revolutionary potential because it represents an in vivo biopsy of active gestational tissues. Objective: We hypothesized that circulating microparticle signaling will differ in pregnancies that experience spontaneous preterm birth from those delivering at term and that these differences will be evident many weeks in advance of clinical presentation. Study design: Utilizing plasma specimens obtained between 10 and 12 weeks' gestation as part of a prospectively collected birth cohort in which pregnancy outcomes are independently validated by 2 board-certified maternal-fetal medicine physicians, 25 singleton cases of spontaneous preterm birth ≤ 34 weeks were matched by maternal age, race, and gestational age of sampling (±2 weeks) with 50 uncomplicated term deliveries. Circulating microparticles from these first-trimester specimens were isolated and analyzed by multiple reaction monitoring mass spectrometry for potential protein biomarkers following previous studies. Markers with robust univariate performance in correlating spontaneous preterm birth were further evaluated for their biological relevance via a combined functional profiling/pathway analysis and for multivariate performance. Results: Among the 132 proteins evaluated, 62 demonstrated robust power of detecting spontaneous preterm birth in a bootstrap receiver-operating characteristic curve analysis at a false discovery rate of < 20% estimated via label permutation. Differential dependency network analysis identified spontaneous preterm birth-associated coexpression patterns linked to biological processes of inflammation, wound healing, and the coagulation cascade. Linear modeling of spontaneous preterm birth using a multiplex of the candidate biomarkers with a fixed sensitivity of 80% exhibited a specificity of 83% with median area under the curve of 0.89. These results indicate a strong potential of multivariate model development for informative risk stratification. Conclusion: This project has identified functional proteomic factors with associated biological processes that are already unique in their expression profiles at 10-12 weeks among women who go on to deliver spontaneously ≤ 34 weeks. These changes, with further validation, will allow the stratification of patients at risk of spontaneous preterm birth before clinical presentation. (hide)
EV-METRIC
17% (46th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Spontaneous pre-term birth (SPTB)
Focus vesicles
microparticle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Size-exclusion chromatography (non-commercial)
NeXosome elution reagent
Protein markers
EV: None
non-EV: None
Proteomics
yes
Show all info
Study aim
Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
Size-exclusion chromatography
Total column volume (mL)
10mL
Sample volume/column (mL)
1mL
Resin type
2% agarose bead
Other
Name other separation method
NeXosome elution reagent
Characterization: Protein analysis
Protein Concentration Method
BCA
Proteomics database
No
Characterization: Lipid analysis
No
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200107
species
Homo sapiens
sample type
Blood plasma
condition
Healthy pregnant
Spontaneous
pre-term birth (SPTB)
separation protocol
Size-exclusion chromatography (non-commercial)
NeXosome elution reagent
Size-exclusion chromatography (non-commercial)
NeXosome elution reagent
Exp. nr.
1
2
EV-METRIC %
17
17