Search > Results

You searched for: EV200000 (EV-TRACK ID)

Showing 1 - 4 of 4

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV200000 3/4 Homo sapiens pleural effusion (d)(U)C Ping, Luo 2020 67%

Study summary

Full title
All authors
Ping Luo, Kaimin Mao, Juanjuan Xu, Feng Wu, Xuan Wang, Sufei Wang, Mei Zhou, Limin Duan, Qi Tan, Guangzhou Ma, Guanghai Yang, Ronghui Du, Hai Huang, Qi Huang, Yumei Li, Mengfei Guo, Yang Jin
Journal
J Extracell Vesicles
Abstract
Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of (show more...)Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of tuberculosis pleural effusion (TPE) and malignancy pleural effusion (MPE) remain challenging. Although extracellular vesicles (EVs) have been confirmed as promising sources of disease biomarkers, little is known about the metabolite compositions of its subpopulations and their roles in the diagnosis of pleural effusion. Here, we performed metabolomics and lipidomics analysis to investigate the metabolite characteristics of two EV subpopulations derived from pleural effusion by differential ultracentrifugation, namely large EVs (lEVs, pelleted at 20,000 × g) and small EVs (sEVs, pelleted at 110,000 × g), and assessed their metabolite differences between tuberculosis and malignancy. A total of 579 metabolites, including amino acids, acylcarnitines, organic acids, steroids, amides and various lipid species, were detected. The results showed that the metabolic profiles of lEVs and sEVs overlapped with and difference from each other but significantly differed from those of pleural effusion. Additionally, different type of vesicles and pleural effusion showed unique metabolic enrichments. Furthermore, lEVs displayed more significant and larger metabolic alterations between the tuberculosis and malignancy groups, and their differential metabolites were more closely related to clinical parameters than those of sEV. Finally, a panel of four biomarker candidates, including phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3, in pleural lEVs was defined based on the comprehensive discovery and validation workflow. This panel showed high performance for distinguishing TPE and MPE, particularly in patients with delayed or missed diagnosis, such as the area under the receiver-operating characteristic curve (AUC) >0.95 in both sets. We conducted comprehensive metabolic profiling analysis of EVs, and further explored the metabolic reprogramming of tuberculosis and malignancy at the level of metabolites in lEVs and sEVs, providing insight into the mechanism of pleural effusion, and identifying novel biomarkers for diagnosing TPE and MPE. (hide)
EV-METRIC
67% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
pleural effusion
Sample origin
lung cancer
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81/ TSG101/ CD63/ CD9
non-EV: calnexin/ GM130
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
pleural effusion
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
30
Wash: time (min)
90
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
110000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
200-1000 nm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101
Not detected EV-associated proteins
CD81
Not detected contaminants
calnexin/ GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
252.3
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 199903278
EM
EM-type
Transmission-EM
Image type
Close-up
EV200000 4/4 Homo sapiens pleural effusion (d)(U)C Ping, Luo 2020 67%

Study summary

Full title
All authors
Ping Luo, Kaimin Mao, Juanjuan Xu, Feng Wu, Xuan Wang, Sufei Wang, Mei Zhou, Limin Duan, Qi Tan, Guangzhou Ma, Guanghai Yang, Ronghui Du, Hai Huang, Qi Huang, Yumei Li, Mengfei Guo, Yang Jin
Journal
J Extracell Vesicles
Abstract
Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of (show more...)Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of tuberculosis pleural effusion (TPE) and malignancy pleural effusion (MPE) remain challenging. Although extracellular vesicles (EVs) have been confirmed as promising sources of disease biomarkers, little is known about the metabolite compositions of its subpopulations and their roles in the diagnosis of pleural effusion. Here, we performed metabolomics and lipidomics analysis to investigate the metabolite characteristics of two EV subpopulations derived from pleural effusion by differential ultracentrifugation, namely large EVs (lEVs, pelleted at 20,000 × g) and small EVs (sEVs, pelleted at 110,000 × g), and assessed their metabolite differences between tuberculosis and malignancy. A total of 579 metabolites, including amino acids, acylcarnitines, organic acids, steroids, amides and various lipid species, were detected. The results showed that the metabolic profiles of lEVs and sEVs overlapped with and difference from each other but significantly differed from those of pleural effusion. Additionally, different type of vesicles and pleural effusion showed unique metabolic enrichments. Furthermore, lEVs displayed more significant and larger metabolic alterations between the tuberculosis and malignancy groups, and their differential metabolites were more closely related to clinical parameters than those of sEV. Finally, a panel of four biomarker candidates, including phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3, in pleural lEVs was defined based on the comprehensive discovery and validation workflow. This panel showed high performance for distinguishing TPE and MPE, particularly in patients with delayed or missed diagnosis, such as the area under the receiver-operating characteristic curve (AUC) >0.95 in both sets. We conducted comprehensive metabolic profiling analysis of EVs, and further explored the metabolic reprogramming of tuberculosis and malignancy at the level of metabolites in lEVs and sEVs, providing insight into the mechanism of pleural effusion, and identifying novel biomarkers for diagnosing TPE and MPE. (hide)
EV-METRIC
67% (90th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
pleural effusion
Sample origin
lung cancer
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD81/ CD63/ CD9
non-EV: calnexin/ GM130
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
pleural effusion
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
30
Wash: time (min)
90
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
110000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
50-200 nm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101/ CD81
Not detected contaminants
calnexin/ GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
136.4
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 168611013
EM
EM-type
Transmission-EM
Image type
Close-up
EV200000 1/4 Homo sapiens pleural effusion (d)(U)C Ping, Luo 2020 56%

Study summary

Full title
All authors
Ping Luo, Kaimin Mao, Juanjuan Xu, Feng Wu, Xuan Wang, Sufei Wang, Mei Zhou, Limin Duan, Qi Tan, Guangzhou Ma, Guanghai Yang, Ronghui Du, Hai Huang, Qi Huang, Yumei Li, Mengfei Guo, Yang Jin
Journal
J Extracell Vesicles
Abstract
Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of (show more...)Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of tuberculosis pleural effusion (TPE) and malignancy pleural effusion (MPE) remain challenging. Although extracellular vesicles (EVs) have been confirmed as promising sources of disease biomarkers, little is known about the metabolite compositions of its subpopulations and their roles in the diagnosis of pleural effusion. Here, we performed metabolomics and lipidomics analysis to investigate the metabolite characteristics of two EV subpopulations derived from pleural effusion by differential ultracentrifugation, namely large EVs (lEVs, pelleted at 20,000 × g) and small EVs (sEVs, pelleted at 110,000 × g), and assessed their metabolite differences between tuberculosis and malignancy. A total of 579 metabolites, including amino acids, acylcarnitines, organic acids, steroids, amides and various lipid species, were detected. The results showed that the metabolic profiles of lEVs and sEVs overlapped with and difference from each other but significantly differed from those of pleural effusion. Additionally, different type of vesicles and pleural effusion showed unique metabolic enrichments. Furthermore, lEVs displayed more significant and larger metabolic alterations between the tuberculosis and malignancy groups, and their differential metabolites were more closely related to clinical parameters than those of sEV. Finally, a panel of four biomarker candidates, including phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3, in pleural lEVs was defined based on the comprehensive discovery and validation workflow. This panel showed high performance for distinguishing TPE and MPE, particularly in patients with delayed or missed diagnosis, such as the area under the receiver-operating characteristic curve (AUC) >0.95 in both sets. We conducted comprehensive metabolic profiling analysis of EVs, and further explored the metabolic reprogramming of tuberculosis and malignancy at the level of metabolites in lEVs and sEVs, providing insight into the mechanism of pleural effusion, and identifying novel biomarkers for diagnosing TPE and MPE. (hide)
EV-METRIC
56% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
pleural effusion
Sample origin
tuberculosis
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: TSG101/ CD81/ CD63/ CD9
non-EV: calnexin/ GM130
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
pleural effusion
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
30
Wash: time (min)
90
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
110000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
50-200 nm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD63/ TSG101/ CD81
Not detected EV-associated proteins
CD9
Not detected contaminants
calnexin/ GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
136.1
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 182567942
EV200000 2/4 Homo sapiens pleural effusion (d)(U)C Ping, Luo 2020 56%

Study summary

Full title
All authors
Ping Luo, Kaimin Mao, Juanjuan Xu, Feng Wu, Xuan Wang, Sufei Wang, Mei Zhou, Limin Duan, Qi Tan, Guangzhou Ma, Guanghai Yang, Ronghui Du, Hai Huang, Qi Huang, Yumei Li, Mengfei Guo, Yang Jin
Journal
J Extracell Vesicles
Abstract
Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of (show more...)Pleural effusion is a common respiratory disease worldwide; however, rapid and accurate diagnoses of tuberculosis pleural effusion (TPE) and malignancy pleural effusion (MPE) remain challenging. Although extracellular vesicles (EVs) have been confirmed as promising sources of disease biomarkers, little is known about the metabolite compositions of its subpopulations and their roles in the diagnosis of pleural effusion. Here, we performed metabolomics and lipidomics analysis to investigate the metabolite characteristics of two EV subpopulations derived from pleural effusion by differential ultracentrifugation, namely large EVs (lEVs, pelleted at 20,000 × g) and small EVs (sEVs, pelleted at 110,000 × g), and assessed their metabolite differences between tuberculosis and malignancy. A total of 579 metabolites, including amino acids, acylcarnitines, organic acids, steroids, amides and various lipid species, were detected. The results showed that the metabolic profiles of lEVs and sEVs overlapped with and difference from each other but significantly differed from those of pleural effusion. Additionally, different type of vesicles and pleural effusion showed unique metabolic enrichments. Furthermore, lEVs displayed more significant and larger metabolic alterations between the tuberculosis and malignancy groups, and their differential metabolites were more closely related to clinical parameters than those of sEV. Finally, a panel of four biomarker candidates, including phenylalanine, leucine, phosphatidylcholine 35:0, and sphingomyelin 44:3, in pleural lEVs was defined based on the comprehensive discovery and validation workflow. This panel showed high performance for distinguishing TPE and MPE, particularly in patients with delayed or missed diagnosis, such as the area under the receiver-operating characteristic curve (AUC) >0.95 in both sets. We conducted comprehensive metabolic profiling analysis of EVs, and further explored the metabolic reprogramming of tuberculosis and malignancy at the level of metabolites in lEVs and sEVs, providing insight into the mechanism of pleural effusion, and identifying novel biomarkers for diagnosing TPE and MPE. (hide)
EV-METRIC
56% (72nd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
pleural effusion
Sample origin
tuberculosis
Focus vesicles
Other / small extracellular vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81/ TSG101/ CD63/ CD9
non-EV: calnexin/ GM130
Proteomics
no
Show all info
Study aim
Biomarker/Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
pleural effusion
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 70 Ti
Pelleting: speed (g)
110000
Wash: volume per pellet (ml)
30
Wash: time (min)
90
Wash: Rotor Type
Type 70 Ti
Wash: speed (g)
110000
EV-subtype
Distinction between multiple subtypes
Size
Used subtypes
200-1000 nm
Characterization: Protein analysis
Protein Concentration Method
BCA
Western Blot
Antibody details provided?
Yes
Antibody dilution provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD63/ TSG101
Not detected EV-associated proteins
CD81
Not detected contaminants
calnexin/ GM130
Characterization: Lipid analysis
Yes
Characterization: Particle analysis
NTA
Report type
Mean
Reported size (nm)
224.2
EV concentration
Yes
Particle yield
Yes, as number of particles per milliliter of starting sample 244682871
1 - 4 of 4
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV200000
species
Homo sapiens
sample type
pleural effusion
condition
lung cancer
lung cancer
tuberculosis
tuberculosis
separation protocol
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
EV subtype
200-1000 nm
50-200 nm
50-200 nm
200-1000 nm
Exp. nr.
3
4
1
2
EV-METRIC %
67
67
56
56