Search > Results

You searched for: EV190092 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample condition
Experiment number
  • Experiments differ in Sample condition
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV190092 2/2 Homo sapiens HT1080 (d)(U)C Brassart B 2019 44%

Study summary

Full title
All authors
Brassart B, Da Silva J, Donet M, Seurat E, Hague F, Terryn C, Velard F, Michel J, Ouadid-Ahidouch H, Monboisse JC, Hinek A, Maquart FX, Ramont L, Brassart-Pasco S.
Journal
Br J Cancer
Abstract
BACKGROUND: Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elasto (show more...)BACKGROUND: Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elastolytic proteinase release. This contributes to bioactive matrix fragment (Matrikine) accumulation like elastin degradation products (EDP) stimulating tumour cell invasive and metastatic properties. We previously demonstrate that EDPs exert protumoural activities through Hsp90 secretion to stabilised extracellular proteinases. METHODS: EDP influence on cancer cell blebbing and extracellular vesicle shedding were examined with a videomicroscope coupled with confocal Yokogawa spinning disk, by transmission electron microscopy, scanning electron microscopy and confocal microscopy. The ribosomal protein SA (RPSA) elastin receptor was identified after affinity chromatography by western blotting and cell immunolocalisation. mRNA expression was studied using real-time PCR. SiRNA were used to confirm the essential role of RPSA. RESULTS: We demonstrate that extracellular matrix degradation products like EDPs induce tumour amoeboid phenotype with cell membrane blebbing and shedding of extracellular vesicle containing Hsp90 and proteinases in the extracellular space. EDPs influence intracellular calcium influx and cytoskeleton reorganisation. Among matrikines, VGVAPG and AGVPGLGVG peptides reproduced EDP effects through RPSA binding. CONCLUSIONS: Our data suggests that matrikines induce cancer cell blebbing and extracellular vesicle release through RPSA binding, favouring dissemination, cell-to-cell communication and growth of cancer cells in metastatic sites. (hide)
EV-METRIC
44% (85th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
elastin degradation product-stimulated
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD9/ CD81/ RhoA/ HSP90/ Actin/ Integrin-alphaV/ P-ERM/ MMP-2/ MMP-14
non-EV: GM130
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HT1080
EV-harvesting Medium
Serum free medium
Cell viability (%)
94
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
JLA110
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Wash: time (min)
Wash: Rotor Type
Wash: speed (g)
Characterization: Protein analysis
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9/ CD81/ RhoA/ HSP90/ Actin/ Integrin-alphaV/ P-ERM/ MMP-2/ MMP-14
Not detected contaminants
GM130
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
Not detected contaminants
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
EV concentration
EM
EM-type
Transmission-EM
Image type
Close-up, Wide-field
EV190092 1/2 Homo sapiens HT1080 (d)(U)C Brassart B 2019 14%

Study summary

Full title
All authors
Brassart B, Da Silva J, Donet M, Seurat E, Hague F, Terryn C, Velard F, Michel J, Ouadid-Ahidouch H, Monboisse JC, Hinek A, Maquart FX, Ramont L, Brassart-Pasco S.
Journal
Br J Cancer
Abstract
BACKGROUND: Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elasto (show more...)BACKGROUND: Carcinogenesis occurs in elastin-rich tissues and leads to local inflammation and elastolytic proteinase release. This contributes to bioactive matrix fragment (Matrikine) accumulation like elastin degradation products (EDP) stimulating tumour cell invasive and metastatic properties. We previously demonstrate that EDPs exert protumoural activities through Hsp90 secretion to stabilised extracellular proteinases. METHODS: EDP influence on cancer cell blebbing and extracellular vesicle shedding were examined with a videomicroscope coupled with confocal Yokogawa spinning disk, by transmission electron microscopy, scanning electron microscopy and confocal microscopy. The ribosomal protein SA (RPSA) elastin receptor was identified after affinity chromatography by western blotting and cell immunolocalisation. mRNA expression was studied using real-time PCR. SiRNA were used to confirm the essential role of RPSA. RESULTS: We demonstrate that extracellular matrix degradation products like EDPs induce tumour amoeboid phenotype with cell membrane blebbing and shedding of extracellular vesicle containing Hsp90 and proteinases in the extracellular space. EDPs influence intracellular calcium influx and cytoskeleton reorganisation. Among matrikines, VGVAPG and AGVPGLGVG peptides reproduced EDP effects through RPSA binding. CONCLUSIONS: Our data suggests that matrikines induce cancer cell blebbing and extracellular vesicle release through RPSA binding, favouring dissemination, cell-to-cell communication and growth of cancer cells in metastatic sites. (hide)
EV-METRIC
14% (44th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: CD81/ HSP90/ CD63/ CD9
non-EV: GM130
Proteomics
no
Show all info
Study aim
Biogenesis/cargo sorting
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
HT1080
EV-harvesting Medium
Serum free medium
Cell viability (%)
94
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
70
Pelleting: rotor type
JLA110
Pelleting: speed (g)
100000
Wash: volume per pellet (ml)
Wash: time (min)
Wash: Rotor Type
JLA110
Wash: speed (g)
Characterization: Protein analysis
None
Protein Concentration Method
Bradford
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Detected contaminants
Not detected contaminants
Fluorescent NTA
Relevant measurements variables specified?
NA
Antibody details provided?
No
Detected EV-associated proteins
Not detected contaminants
Characterization: RNA analysis
RNA analysis
Type
(RT)(q)PCR
Database
No
Proteinase treatment
No
RNAse treatment
Yes
Moment of RNAse treatment
After
RNAse type
RNase A
RNAse concentration
0.5
Characterization: Lipid analysis
No
Characterization: Particle analysis
None
EM
EM-type
Report size (nm)
EV concentration
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV190092
species
Homo sapiens
sample type
Cell culture
cell type
HT1080
condition
elastin
degradation product-stimulated
Control condition
separation protocol
(d)(U)C
(d)(U)C
Exp. nr.
2
1
EV-METRIC %
44
14