Search > Results

You searched for: EV180054 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample condition
Experiment number
  • Experiments differ in Sample condition
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV180054 1/2 Homo sapiens Urine (d)(U)C
SEC
UF
Lozano-Ramos SI 2017 14%

Study summary

Full title
All authors
Lozano-Ramos SI, Bancu I, Carreras-Planella L, Monguió-Tortajada M, Cañas L, Juega J, Bonet J, Armengol MP, Lauzurica R, Borràs FE
Journal
BMC Nephrol
Abstract
BACKGROUND: Kidney transplantation (KTx) is the best therapeutic approach for chronic kidney disease (show more...)BACKGROUND: Kidney transplantation (KTx) is the best therapeutic approach for chronic kidney diseases leading to irreversible kidney failure. Considering the origin of the graft, several studies have reported differences between living (LD) and deceased donors (DD) in graft and patient survival. These differences seem to be related to multiple factors including, donor age and time of cold ischemia among others. Many of transplanted organs come from old-aged DDs, in which pre-transplant biopsy is recommended. However, kidney biopsy has several limitations, and there is a need to develop alternatives to assess the status of a kidney before transplantation. As the analysis of urinary extracellular vesicles (uEVs) rendered promising results as non-invasive biomarkers of kidney-related pathologies, this pilot study aimed to investigate whether profiling uEVs of LDs and DDs may be of help to assess the quality of the kidney before nephrectomy. METHODS: uEVs from 5 living donors and 7 deceased donors were isolated by size-exclusion chromatography, and their protein and miRNA content were analysed by liquid chromatography followed by mass spectrometry and next generation sequencing, respectively. Then, hierarchical clustering and venn diagrams were done with Perseus software and InteractiVenn tool. Specific EVs data bases were also used for Gene Ontology analysis. RESULTS: Next generation sequencing revealed that uEVs from DDs contained less miRNAs than LDs, but most of the DD-expressed miRNAs were shared with LDs (96%). Only miR-326 (targeting the apoptotic-related Bcl2) was found significantly over-represented in LD. Focusing on the protein content, we detected a low intra-group correlation in both types of donors. Despite these differences, hierarchical clustering of either miRNA or protein data could not identify a differential profile between LDs and DDs. Of note, 90% of transplanted patients had a functional graft after a year from KTx. CONCLUSIONS: In this pilot study we found that, in normo-functional grafts, minor differences in uEVs profile could not discriminate between LDs and DDs. (hide)
EV-METRIC
14% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Deceased
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: CD63/ CD9
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Not specified
Size-exclusion chromatography
Total column volume (mL)
12
Sample volume/column (mL)
0.3
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Proteomics database
No
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
124-250
EV concentration
Yes
EV180054 2/2 Homo sapiens Urine (d)(U)C
SEC
UF
Lozano-Ramos SI 2017 14%

Study summary

Full title
All authors
Lozano-Ramos SI, Bancu I, Carreras-Planella L, Monguió-Tortajada M, Cañas L, Juega J, Bonet J, Armengol MP, Lauzurica R, Borràs FE
Journal
BMC Nephrol
Abstract
BACKGROUND: Kidney transplantation (KTx) is the best therapeutic approach for chronic kidney disease (show more...)BACKGROUND: Kidney transplantation (KTx) is the best therapeutic approach for chronic kidney diseases leading to irreversible kidney failure. Considering the origin of the graft, several studies have reported differences between living (LD) and deceased donors (DD) in graft and patient survival. These differences seem to be related to multiple factors including, donor age and time of cold ischemia among others. Many of transplanted organs come from old-aged DDs, in which pre-transplant biopsy is recommended. However, kidney biopsy has several limitations, and there is a need to develop alternatives to assess the status of a kidney before transplantation. As the analysis of urinary extracellular vesicles (uEVs) rendered promising results as non-invasive biomarkers of kidney-related pathologies, this pilot study aimed to investigate whether profiling uEVs of LDs and DDs may be of help to assess the quality of the kidney before nephrectomy. METHODS: uEVs from 5 living donors and 7 deceased donors were isolated by size-exclusion chromatography, and their protein and miRNA content were analysed by liquid chromatography followed by mass spectrometry and next generation sequencing, respectively. Then, hierarchical clustering and venn diagrams were done with Perseus software and InteractiVenn tool. Specific EVs data bases were also used for Gene Ontology analysis. RESULTS: Next generation sequencing revealed that uEVs from DDs contained less miRNAs than LDs, but most of the DD-expressed miRNAs were shared with LDs (96%). Only miR-326 (targeting the apoptotic-related Bcl2) was found significantly over-represented in LD. Focusing on the protein content, we detected a low intra-group correlation in both types of donors. Despite these differences, hierarchical clustering of either miRNA or protein data could not identify a differential profile between LDs and DDs. Of note, 90% of transplanted patients had a functional graft after a year from KTx. CONCLUSIONS: In this pilot study we found that, in normo-functional grafts, minor differences in uEVs profile could not discriminate between LDs and DDs. (hide)
EV-METRIC
14% (40th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
SEC
UF
Protein markers
EV: CD63/ CD9
non-EV: None
Proteomics
yes
Show all info
Study aim
Biomarker, Identification of content (omics approaches)
Sample
Species
Homo sapiens
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Pelleting performed
No
Ultra filtration
Cut-off size (kDa)
100
Membrane type
Not specified
Size-exclusion chromatography
Total column volume (mL)
12
Sample volume/column (mL)
0.3
Resin type
Sepharose CL-2B
Characterization: Protein analysis
Protein Concentration Method
Nanodrop
Proteomics database
No
Characterization: RNA analysis
Database
No
Proteinase treatment
No
RNAse treatment
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
124-250
EV concentration
Yes
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV180054
species
Homo sapiens
sample type
Urine
condition
Deceased
Control condition
separation protocol
(d)(U)C
SEC
UF
(d)(U)C
SEC
UF
Exp. nr.
1
2
EV-METRIC %
14
14