Search > Results

You searched for: EV170036 (EV-TRACK ID)

Showing 1 - 12 of 12

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Experiment number
  • Experiments differ in Sample type, Vesicle type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV170036 8/12 Homo sapiens Serum (d)(U)C
Filtration
Krafft C 2017 28%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
28% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Benign prostate hyperplasia
Focus vesicles
EV12
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-200
Particle yield
1.10E+11 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 10/12 Homo sapiens Serum (d)(U)C
Filtration
Krafft C 2017 28%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
28% (70th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Prostate cancer
Focus vesicles
EV120
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-200
Particle yield
1.00E+11 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 1/12 Homo sapiens Blood plasma (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Prostate cancer
Focus vesicles
EV12
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
311
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.55E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 2/12 Homo sapiens Serum (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
EV12
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
11.4
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.34E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 3/12 Homo sapiens Blood plasma (d)(U)C
Filtration
Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Prostate cancer
Focus vesicles
EV120
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Lipid analysis
No
Characterization: Particle analysis
Other particle analysis name(1)
Raman spectroscopy
EV170036 4/12 Homo sapiens Blood plasma (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Prostate cancer
Focus vesicles
EV120
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
311
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
4.28E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 5/12 Homo sapiens Blood plasma (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
EV120
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
9.4
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.86E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 6/12 Homo sapiens Serum (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Control condition
Focus vesicles
EV120
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
1273
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
1.69E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 7/12 Homo sapiens Serum (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Prostate cancer
Focus vesicles
EV120
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
120000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
839.6
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
4.84E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 9/12 Homo sapiens Blood plasma (d)(U)C
Filtration
Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Benign prostate hyperplasia
Focus vesicles
EV12
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
213.2 (pelleting)
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
SW 41 Ti
Pelleting: speed (g)
120000
Pelleting: adjusted k-factor
213.2
Filtration steps
0.22µm or 0.2µm
EV-subtype
Distinction between multiple subtypes
we proceeded with IR and RAMAN analysis of EVs isolated by 12000 x g (frequently designated as micro
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
4-6 for healty donors in EV12; 100 in cancer patients;
Characterization: Lipid analysis
No
Characterization: Particle analysis
Other particle analysis name(1)
Raman spectroscopy
EV170036 11/12 Homo sapiens Serum (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (56th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Serum
Sample origin
Prostate cancer
Focus vesicles
EV12
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Serum
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
255.2
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
2.24E+10 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
EV170036 12/12 Homo sapiens Blood plasma (d)(U)C Krafft C 2017 14%

Study summary

Full title
All authors
Krafft C, Wilhelm K, Eremin A, Nestel S, von Bubnoff N, Schultze-Seemann W, Popp J, Nazarenko I
Journal
J Cell Sci
Abstract
In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and syste (show more...)In cancer, extracellular vesicles (EV) contribute to tumor progression by regulating local and systemic effects. Being released into body fluids, EV may be used in nanomedicine as a valuable source for diagnostic biomarkers. In this work, infrared and Raman spectroscopy were used for comprehensive comparative analysis of cancer versus non-cancer EV and patient screening. Two different EV fractions enriched in exosomes and microvesicles were isolated by differential centrifugation from serum and plasma of cancer and non-cancer patients and from serum and plasma of a healthy donor. The EV fractions were then subjected to drop-coating deposition and drying on calcium fluoride substrates. Reduction of alpha-helix-rich proteins and enhancement of beta-sheet-rich proteins as a cancer-specific blood EV signature was determined, and subsequently this feature was applied for a pilot study aiming to detect prostate cancer in a test cohort of patients with high-grade prostate carcinoma and benign hypoplasia. (hide)
EV-METRIC
14% (38th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Blood plasma
Sample origin
Control condition
Focus vesicles
EV12
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biomarker
Sample
Species
Homo sapiens
Sample Type
Blood plasma
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: speed (g)
12000
Characterization: Protein analysis
None
Protein Concentration Method
microBCA
Protein Yield (µg)
9.4
Characterization: Lipid analysis
No
Characterization: Particle analysis
NTA
Report type
Size range/distribution
Reported size (nm)
30-150
EV concentration
Yes
Particle yield
4.26E+09 particles/ml start sample
EM
EM-type
Transmission-EM
Image type
Wide-field
Other particle analysis name(1)
Raman spectroscopy
1 - 12 of 12
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV170036
species
Homo
sapiens
sample type
Serum
Serum
Blood
plasma
Serum
Blood
plasma
Blood
plasma
Blood
plasma
Serum
Serum
Blood
plasma
Serum
Blood
plasma
condition
Benign
prostate
hyperplasia
Prostate
cancer
Prostate
cancer
Control
condition
Prostate
cancer
Prostate
cancer
Control
condition
Control
condition
Prostate
cancer
Benign
prostate
hyperplasia
Prostate
cancer
Control
condition
separation protocol
(d)(U)C
Filtration
(d)(U)C
Filtration
(d)(U)C
(d)(U)C
(d)(U)C
Filtration
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
(d)(U)C
Filtration
(d)(U)C
(d)(U)C
vesicle related term
EV12
EV120
EV12
EV12
EV120
EV120
EV120
EV120
EV120
EV12
EV12
EV12
Exp. nr.
8
10
1
2
3
4
5
6
7
9
11
12
EV-METRIC %
28
28
14
14
14
14
14
14
14
14
14
14