Search > Results

You searched for: EV170008 (EV-TRACK ID)

Showing 1 - 3 of 3

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in isolation protocol
Experiment number
  • Experiments differ in isolation protocol
Experiment number
  • Experiments differ in isolation protocol
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV170008 1/3 Homo sapiens primary monocyte derived dendritic cell DG
(d)(U)C
Mercedes Tkach 2017 100%

Study summary

Full title
All authors
Tkach M, Kowal J, Zucchetti AE, Enserink L, Jouve M, Lankar D, Saitakis M, Martin-Jaular L, Théry C
Journal
EMBO J
Abstract
Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnosti (show more...)Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC-peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T-cell activation in vitro When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN-γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN-γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles. (hide)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Protein markers
EV: CD63/ MHC2/ CD9/ CD9,MHC2
non-EV: None
Proteomics
no
Show all info
Study aim
EV functional activity
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary monocyte derived dendritic cell
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Pelleting performed
Yes
Pelleting: time(min)
20
Pelleting: rotor type
Swinging bucket
Pelleting: speed (g)
2000
Wash: time (min)
20
Wash: Rotor Type
Eppendorf 5810R cf; swinging bucket
Wash: speed (g)
2000
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
0.1
Highest density fraction
0.3
Sample volume (mL)
1.2
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 55 Ti
Speed (g)
350000
Duration (min)
60
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.5
Pelleting: duration (min)
30
Pelleting: rotor type
TLA-110
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
65.69
EV-subtype
Distinction between multiple subtypes
Centrifugation steps: 2K, 10K, 100K
PMID previous EV protein analysis
26858453
Protein Concentration Method
microBCA
Protein Yield (µg)
2.9+-0.3
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9,MHC2
Flow cytometry
Type of Flow cytometry
MACSQuant Miltenyi
Calibration bead size
0.1-0.3,0.4-0.6,0.7-0.9,1.0-1.9
Antibody details provided?
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
26858453
Extra particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
Particle yield
6.52E10+-2.03E10 particles/million cells
EM
EM-type
Transmission-EM/ Scanning-EM
EM protein
MHC2
Image type
Close-up, Wide-field
EV170008 2/3 Homo sapiens primary monocyte derived dendritic cell DG
(d)(U)C
Mercedes Tkach 2017 100%

Study summary

Full title
All authors
Tkach M, Kowal J, Zucchetti AE, Enserink L, Jouve M, Lankar D, Saitakis M, Martin-Jaular L, Théry C
Journal
EMBO J
Abstract
Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnosti (show more...)Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC-peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T-cell activation in vitro When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN-γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN-γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles. (hide)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Adj. k-factor
2097 (pelleting) / 2097 (washing)
Protein markers
EV: CD63/ MHC2/ CD9/ CD9,MHC2
non-EV: None
Proteomics
no
Show all info
Study aim
EV functional activity
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary monocyte derived dendritic cell
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Pelleting performed
Yes
Pelleting: time(min)
40
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
10000
Pelleting: adjusted k-factor
2097.
Wash: time (min)
40
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
10000
Wash: adjusted k-factor
2097.
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
0.1
Highest density fraction
0.3
Sample volume (mL)
1.2
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 55 Ti
Speed (g)
350000
Duration (min)
60
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.5
Pelleting: duration (min)
30
Pelleting: rotor type
TLA-110
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
65.69
EV-subtype
Distinction between multiple subtypes
Centrifugation steps: 2K, 10K, 100K
PMID previous EV protein analysis
26858453
Protein Concentration Method
microBCA
Protein Yield (µg)
1.7+-0.3
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9,MHC2
Flow cytometry
Type of Flow cytometry
MACSQuant Miltenyi
Calibration bead size
0.1-0.3,0.4-0.6,0.7-0.9,1.0-1.9
Antibody details provided?
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
26858453
Extra particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
Particle yield
4.95E10+-3.81E10 particles/million cells
EM
EM-type
Transmission-EM/ Scanning-EM
EM protein
MHC2
Image type
Close-up, Wide-field
EV170008 3/3 Homo sapiens primary monocyte derived dendritic cell DG
(d)(U)C
Mercedes Tkach 2017 100%

Study summary

Full title
All authors
Tkach M, Kowal J, Zucchetti AE, Enserink L, Jouve M, Lankar D, Saitakis M, Martin-Jaular L, Théry C
Journal
EMBO J
Abstract
Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnosti (show more...)Exosomes, nano-sized secreted extracellular vesicles (EVs), are actively studied for their diagnostic and therapeutic potential. In particular, exosomes secreted by dendritic cells (DCs) have been shown to carry MHC-peptide complexes allowing efficient activation of T lymphocytes, thus displaying potential as promoters of adaptive immune responses. DCs also secrete other types of EVs of different size, subcellular origin and protein composition, whose immune capacities have not been yet compared to those of exosomes. Here, we show that large EVs (lEVs) released by human DCs are as efficient as small EVs (sEVs), including exosomes, to induce CD4+ T-cell activation in vitro When released by immature DCs, however, lEVs and sEVs differ in their capacity to orient T helper (Th) cell responses, the former favouring secretion of Th2 cytokines, whereas the latter promote Th1 cytokine secretion (IFN-γ). Upon DC maturation, however, these functional differences are abolished, and all EVs become able to induce IFN-γ. Our results highlight the need to comprehensively compare the functionalities of EV subtypes in all patho/physiological systems where exosomes are claimed to perform critical roles. (hide)
EV-METRIC
100% (99th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
Control condition
Focus vesicles
extracellular vesicle
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
DG
(d)(U)C
Adj. k-factor
209.7 (pelleting) / 209.7 (washing)
Protein markers
EV: CD63/ MHC2/ CD9/ CD9,MHC2
non-EV: None
Proteomics
no
Show all info
Study aim
EV functional activity
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-producing cells
primary monocyte derived dendritic cell
EV-harvesting Medium
EV-depleted serum
Preparation of EDS
overnight (16h) at >=100,000g
Cell viability (%)
NA
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
Type 45 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
209.7
Wash: time (min)
90
Wash: Rotor Type
Type 45 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
209.7
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
3
Lowest density fraction
0.1
Highest density fraction
0.3
Sample volume (mL)
1.2
Orientation
Bottom-up (sample migrates upwards)
Rotor type
SW 55 Ti
Speed (g)
350000
Duration (min)
60
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
2.5
Pelleting: duration (min)
30
Pelleting: rotor type
TLA-110
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
65.69
EV-subtype
Distinction between multiple subtypes
Centrifugation steps: 2K, 10K, 100K
PMID previous EV protein analysis
26858453
Protein Concentration Method
microBCA
Protein Yield (µg)
1.1+-0.2
Western Blot
Antibody details provided?
Yes
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9,MHC2
Flow cytometry
Type of Flow cytometry
MACSQuant Miltenyi
Calibration bead size
0.1-0.3,0.4-0.6,0.7-0.9,1.0-1.9
Antibody details provided?
No
Characterization: Lipid analysis
No
Characterization: Particle analysis
PMID previous EV particle analysis
26858453
Extra particle analysis
NTA
Report type
Size range/distribution
EV concentration
Yes
Particle yield
3.76E10+-1.41E10 particles/million cells
EM
EM-type
Transmission-EM/ Scanning-EM
EM protein
MHC2
Image type
Close-up, Wide-field
1 - 3 of 3
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV170008
species
Homo sapiens
sample type
Cell culture
cell type
primary
monocyte derived dendritic cell
condition
Control condition
separation protocol
DG
(d)(U)C
DG
(d)(U)C
DG
(d)(U)C
Exp. nr.
1
2
3
EV-METRIC %
100
100
100