Search > Results

You searched for: EV170004 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV170004 1/1 Homo sapiens Adipose tissue DG
dUC
Filtration
Jeurissen S 2017 88%

Study summary

Full title
All authors
Jeurissen S, Vergauwen G, Van Deun J, Lapeire L, Depoorter V, Miinalainen I, Sormunen R, Van den Broecke R, Braems G, Cocquyt V, Denys H, Hendrix A
Journal
Cell Adh Migr
Abstract
Breast cancer cells closely interact with different cell types of the surrounding adipose tissue to (show more...)Breast cancer cells closely interact with different cell types of the surrounding adipose tissue to favor invasive growth and metastasis. Extracellular vesicles (EVs) are nanometer-sized vesicles secreted by different cell types that shuttle proteins and nucleic acids to establish cell-cell communication. To study the role of EVs released by cancer-associated adipose tissue in breast cancer progression and metastasis a standardized EV isolation protocol that obtains pure EVs and maintains their functional characteristics is required. We implemented differential ultracentrifugation as a pre-enrichment step followed by OptiPrep density gradient centrifugation (dUC-ODG) to isolate EVs from the conditioned medium of cancer-associated adipose tissue. A combination of immune-electron microscopy, nanoparticle tracking analysis (NTA) and Western blot analysis identified EVs that are enriched in flotillin-1, CD9 and CD63, and sized between 20 and 200 nm with a density of 1.076-1.125 g/ml. The lack of protein aggregates and cell organelle proteins confirmed the purity of the EV preparations. Next, we evaluated whether dUC-ODG isolated EVs are functionally active. ZR75.1 breast cancer cells treated with cancer-associated adipose tissue-secreted EVs from breast cancer patients showed an increased phosphorylation of CREB. MCF-7 breast cancer cells treated with adipose tissue-derived EVs exhibited a stronger propensity to form cellular aggregates. In conclusion, dUC-ODG purifies EVs from conditioned medium of cancer-associated adipose tissue, and these EVs are morphologically intact and biologically active. (hide)
EV-METRIC
88% (87th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Adipose tissue
Focus vesicles
extracellular vesicle
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC + Filtration
Adj. k-factor
138.6 (pelleting) / 138.6 (washing)
Protein markers
EV: CD9/ Flotillin-1/ HSP70/ FABP4/ CD63
non-EV: Calreticulin/ GM130/ Prohibitin
Proteomics
no
Show all info
Study aim
Function, Technical analysis comparing/optimizing EV-related methods
Sample
Species
Homo sapiens
Sample Type
Adipose tissue
Origin
breast cancer
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
120
Pelleting: rotor type
SW 55 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
138.6
Wash: time (min)
120
Wash: Rotor Type
SW 55 Ti
Wash: speed (g)
100000
Wash: adjusted k-factor
138.6
Density gradient
Type
Discontinuous
Number of initial discontinuous layers
4
Lowest density fraction
0.05
Highest density fraction
0.4
Sample volume (mL)
1
Orientation
Top-down (sample migrates downwards)
Rotor type
SW 32.1 Ti
Speed (g)
100000
Duration (min)
1080
Fraction volume (mL)
1
Fraction processing
Centrifugation
Pelleting: volume per fraction
16
Pelleting: duration (min)
180
Pelleting: rotor type
SW 32.1 Ti
Pelleting: speed (g)
100000
Pelleting: adjusted k-factor
297.9
Characterization: Protein analysis
Protein Concentration Method
Lowry-based assay
Western Blot
Lysis buffer provided?
Yes
Detected EV-associated proteins
CD9, Flotillin-1, HSP70, FABP4
Characterization: Particle analysis
NTA
Report type
Modus
Reported size (nm)
116
EV concentration
Yes
Particle yield
2.2 10E09
EM
EM-type
Immune-EM
Image type
Close-up, Wide-field
Report size (nm)
20-200
1 - 1 of 1