Search > Results

You searched for: EV150032 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV150032 1/1 Bos bovis Milk (d)(U)C
Filtration
Wolf T 2015 33%

Study summary

Full title
All authors
Wolf T, Baier SR, Zempleni J
Journal
J Nutr
Abstract
BACKGROUND: MicroRNAs play essential roles in gene regulation. A substantial fraction of microRNAs i (show more...)BACKGROUND: MicroRNAs play essential roles in gene regulation. A substantial fraction of microRNAs in tissues and body fluids is encapsulated in exosomes, thereby conferring protection against degradation and a pathway for intestinal transport. MicroRNAs in cow milk are bioavailable in humans. OBJECTIVE: This research assessed the transport mechanism of bovine milk exosomes, and therefore microRNAs, in human and rodent intestinal cells. METHODS: The intestinal transport of bovine milk exosomes and microRNAs was assessed using fluorophore-labeled bovine milk exosomes in human colon carcinoma Caco-2 cells and rat small intestinal IEC-6 cells. Transport kinetics and mechanisms were characterized using dose-response studies, inhibitors of vesicle transport, carbohydrate competitors, proteolysis of surface proteins on cells and exosomes, and transepithelial transport in transwell plates. RESULTS: Exosome transport exhibited saturation kinetics at 37°C [Michaelis constant (Km) = 55.5 ± 48.6 ?g exosomal protein/200 ?L of media; maximal transport rate = 0.083 ± 0.057 ng of exosomal protein · 81,750 cells(-1) · h(-1)] and decreased by 64% when transport was measured at 4°C, consistent with carrier-mediated transport in Caco-2 cells. Exosome uptake decreased by 61-85% under the following conditions compared with controls in Caco-2 cells: removal of exosome and cell surface proteins by proteinase K, inhibition of endocytosis and vesicle trafficking by synthetic inhibitors, and inhibition of glycoprotein binding by carbohydrate competitors. When milk exosomes, at a concentration of 5 times the Km, were added to the upper chamber in transwell plates, Caco-2 cells accumulated miR-29b and miR-200c in the lower chamber, and reverse transport was minor. Transport characteristics were similar in IEC-6 cells and Caco-2 cells, except that substrate affinity and transporter capacity were lower and higher, respectively. CONCLUSION: The uptake of bovine milk exosomes is mediated by endocytosis and depends on cell and exosome surface glycoproteins in human and rat intestinal cells. (hide)
EV-METRIC
33% (53rd percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Milk
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
Adj. k-factor
176.2 (pelleting)
Protein markers
EV: CD63
non-EV: Cell organelle protein
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Bos bovis
Sample Type
Milk
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Pelleting: rotor type
F37L-8x100
Pelleting: adjusted k-factor
176.2
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63
Detected contaminants
Cell organelle protein
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV150032
species
Bos bovis
sample type
Milk
condition
NAY
separation protocol
(d)(U)C
Filtration
Exp. nr.
1
EV-METRIC %
33