Search > Results

You searched for: EV130226 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV130226 1/1 Homo sapiens NAY (d)(U)C
Filtration
UF
Quintero IB 2013 22%

Study summary

Full title
All authors
Quintero IB, Herrala AM, Araujo CL, Pulkka AE, Hautaniemi S, Ovaska K, Pryazhnikov E, Kulesskiy E, Ruuth MK, Soini Y, Sormunen RT, Khirug L, Vihko PT
Journal
PLoS One
Abstract
The molecular mechanisms underlying prostate carcinogenesis are poorly understood. Prostatic acid ph (show more...)The molecular mechanisms underlying prostate carcinogenesis are poorly understood. Prostatic acid phosphatase (PAP), a prostatic epithelial secretion marker, has been linked to prostate cancer since the 1930's. However, the contribution of PAP to the disease remains controversial. We have previously cloned and described two isoforms of this protein, a secretory (sPAP) and a transmembrane type-I (TMPAP). The goal in this work was to understand the physiological function of TMPAP in the prostate. We conducted histological, ultra-structural and genome-wide analyses of the prostate of our PAP-deficient mouse model (PAP(-/-)) with C57BL/6J background. The PAP(-/-) mouse prostate showed the development of slow-growing non-metastatic prostate adenocarcinoma. In order to find out the mechanism behind, we identified PAP-interacting proteins byyeast two-hybrid assays and a clear result was obtained for the interaction of PAP with snapin, a SNARE-associated protein which binds Snap25 facilitating the vesicular membrane fusion process. We confirmed this interaction by co-localization studies in TMPAP-transfected LNCaP cells (TMPAP/LNCaP cells) and in vivo FRET analyses in transient transfected LNCaP cells. The differential gene expression analyses revealed the dysregulation of the same genes known to be related to synaptic vesicular traffic. Both TMPAP and snapin were detected in isolated exosomes. Our results suggest that TMPAP is involved in endo-/exocytosis and disturbed vesicular traffic is a hallmark of prostate adenocarcinoma. (hide)
EV-METRIC
22% (59th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Filtration
UF
Adj. k-factor
128.7 (pelleting) / 128.7 (washing)
Protein markers
EV: Flotillin/ CD13/ Snapin
non-EV:
Proteomics
no
Show all info
Study aim
Other/function of a protein (TMPAP) in prostate cancer development
Sample
Species
Homo sapiens
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
120
Pelleting: rotor type
50Ti
Pelleting: adjusted k-factor
128.7
Wash: volume per pellet (ml)
1
Wash: Rotor Type
50Ti
Wash: adjusted k-factor
128.7
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD13/ Flotillin/ Snapin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
CD13/ Flotillin/ Snapin
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV130226
species
Homo sapiens
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
Filtration
UF
Exp. nr.
1
EV-METRIC %
22