Search > Results

You searched for: EV130014 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Details EV-TRACK ID Experiment nr. Species Sample type separation protocol First author Year EV-METRIC
EV130014 1/1 Homo sapiens
Mus musculus
Cell culture supernatant DG
dUC
Li J 2013 44%

Study summary

Full title
All authors
Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, Liu J, Pan T, Chen J, Wu M, Zhou X, Yuan Z
Journal
Nat Immunol
Abstract
The cell-to-cell transmission of viral resistance is a potential mechanism for amplifying the interf (show more...)The cell-to-cell transmission of viral resistance is a potential mechanism for amplifying the interferon-induced antiviral response. In this study, we report that interferon-? (IFN-?) induced the transfer of resistance to hepatitis B virus (HBV) from nonpermissive liver nonparenchymal cells (LNPCs) to permissive hepatocytes via exosomes. Exosomes from IFN-?-treated LNPCs were rich in molecules with antiviral activity. Moreover, exosomes from LNPCs were internalized by hepatocytes, which mediated the intercellular transfer of antiviral molecules. Finally, we found that exosomes also contributed to the antiviral response of IFN-? to mouse hepatitis virus A59 and adenovirus in mice. Thus, we propose an antiviral mechanism of IFN-? activity that involves the induction and intercellular transfer of antiviral molecules via exosomes. (hide)
EV-METRIC
44% (80th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
DNF
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
DG + dUC
Protein markers
EV: Alix/ TSG101/ HSP90/ CD63/ LAMP2
non-EV: Cell organelle protein
Proteomics
no
EV density (g/ml)
1.1-1.19
Show all info
Study aim
Function
Sample
Species
Homo sapiens / Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Density gradient
Only used for validation of main results
1
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Bottom-up
Speed (g)
210000
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Alix/ CD63/ HSP90/ TSG101/ LAMP2
Detected contaminants
Cell organelle protein
ELISA
Detected EV-associated proteins
LAMP2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1