Search > Results

You searched for: EV120038 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, isolation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Isolation protocol
  • Gives a short, non-chronological overview of the different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Isolation protocol First author Year EV-METRIC
EV120038 2/2 Mus musculus Brain tissue 0.2 µm filter
dUC
Sucrose-DG
Perez-Gonzalez R 2012 56%

Study summary

Full title
All authors
Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E
Journal
J Biol Chem
Abstract
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-? precur (show more...)In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-? precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-? (A?). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and A?, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted A?, is harmful to the brain. (hide)
EV-METRIC
56% (91st percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Brain tissue
Focus vesicles
exosomes
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
0.2 µm filter + dUC + Sucrose-DG
Protein markers
EV: Flotilin1/ ADAM10/ BACE1/ NISCASTRIN/ APP/ Beta-amyloid/ AChE
non-EV: None
Proteomics
no
EV density (g/ml)
1.07-1.17
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Mus musculus
Sample Type
Brain tissue
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Wash: volume per pellet (ml)
60
Density gradient
Density medium
Sucrose
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Bottom-up
Speed (g)
100000
Filtration steps
0.22µm or 0.2µm
Characterization: Protein analysis
Western Blot
Detected EV-associated proteins
Flotilin1/ ADAM10/ BACE1/ NISCASTRIN/ APP/ Beta-amyloid/ AChE
ELISA
Detected EV-associated proteins
ADAM10/ BACE1/ NISCASTRIN/ APP/ Beta-amyloid/ AChE
Fluorescent NTA
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up, Wide-field
EV120038 1/2 Homo sapiens Brain tissue 0.2 µm filter
dUC
Perez-Gonzalez R 2012 29%

Study summary

Full title
All authors
Perez-Gonzalez R, Gauthier SA, Kumar A, Levy E
Journal
J Biol Chem
Abstract
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-? precur (show more...)In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-? precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-? (A?). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and A?, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted A?, is harmful to the brain. (hide)
EV-METRIC
29% (50th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Isolation method: density gradient, at least as validation of results attributed to EVs
EV density
Isolation method: reporting of obtained EV density
ultracentrifugation specifics
Isolation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Brain tissue
Focus vesicles
exosomes
Isolation protocol
Isolation protocol
  • Gives a short, non-chronological overview of the
    different steps of the isolation protocol.
    • dUC = differential ultracentrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
0.2 µm filter + dUC
Protein markers
EV: None
non-EV: None
Proteomics
no
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Homo sapiens
Sample Type
Brain tissue
Isolation Method
Differential ultracentrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting: time(min)
70
Wash: volume per pellet (ml)
60
Filtration steps
0.22µm or 0.2µm
Fluorescent NTA
Characterization: Particle analysis
EM
EM-type
immune EM
Image type
Close-up, Wide-field
1 - 2 of 2
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV120038
species
Mus musculus
Homo sapiens
sample type
Brain tissue
Brain tissue
isolation protocol
0.2 µm filter
dUC
Sucrose-DG
0.2 µm filter
dUC
case number
2
1
EV-METRIC %
56
29