Search > Results

You searched for: EV110064 (EV-TRACK ID)

Showing 1 - 2 of 2

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Experiment number
  • Experiments differ in Sample type
Experiment number
  • Experiments differ in Sample type
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110064 2/2 Mus musculus NAY (d)(U)C
DG
Street JM 2011 33%

Study summary

Full title
All authors
Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW
Journal
J Physiol
Abstract
Exosomes are vesicles released following fusion of endosomes with the plasma membrane. Urine contain (show more...)Exosomes are vesicles released following fusion of endosomes with the plasma membrane. Urine contains exosomes that are released from the entire length of the nephron and change in composition with kidney disease. Exosomes can shuttle information between non-renal cells via transfer of protein and RNA. In this study murine kidney collecting duct (mCCDC11) cells were used to demonstrate that exosomes can act as a signalling mechanism between cells. First, the release of exosomes by mCCDC11 cells was confirmed by multiple approaches. Following isopynic centrifugation, exosomal proteins flotillin-1 and TSG101 were identified in fractions consistent with exosomes. Electron microscopy demonstrated structures consistent in size and shape with exosomes. Exposure of mCCDC11 cells to the synthetic vasopressin analogue, desmopressin, did not affect exosomal flotillin-1 or TSG101 but increased aquaporin 2 (AQP2) in a dose- and time-dependent manner that was highly correlated with cellular AQP2 (exosomal AQP2 vs. cellular AQP2, Pearson correlation coefficient r = 0.93). To test whether the ratio of exosomal AQP2/flotillin-1 is under physiological control in vivo, rats were treated with desmopressin. The ratio of AQP2/flotillin-1 in the urinary exosome was significantly increased. Inter-cellular signalling by exosomes was demonstrated: exosomes from desmopressin-treated cells stimulated both AQP2 expression and water transport in untreated mCCDc11 cells (water flow across cells: control exosome treatment 52.8 ± 11 ?l cm(-2); AQP2-containing exosomes 77.4 ± 4 ?l cm(-2), P = 0.05, n = 4). In summary, the amount of AQP2 in exosomes released from collecting duct cells is physiologically regulated and exosomal AQP2 closely reflects cellular expression. Exosomes can transfer functional AQP2 between cells and this represents a novel physiological mechanism for cell-to-cell communication within the kidney. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: TSG101/ Flotilin1/ AQP2
non-EV:
Proteomics
no
EV density (g/ml)
1.1-1.15
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.25
Highest density fraction
2
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotilin1/ TSG101/ AQP2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AQP2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Close-up
EV110064 1/2 Rattus norvegicus/rattus Urine (d)(U)C Street JM 2011 0%

Study summary

Full title
All authors
Street JM, Birkhoff W, Menzies RI, Webb DJ, Bailey MA, Dear JW
Journal
J Physiol
Abstract
Exosomes are vesicles released following fusion of endosomes with the plasma membrane. Urine contain (show more...)Exosomes are vesicles released following fusion of endosomes with the plasma membrane. Urine contains exosomes that are released from the entire length of the nephron and change in composition with kidney disease. Exosomes can shuttle information between non-renal cells via transfer of protein and RNA. In this study murine kidney collecting duct (mCCDC11) cells were used to demonstrate that exosomes can act as a signalling mechanism between cells. First, the release of exosomes by mCCDC11 cells was confirmed by multiple approaches. Following isopynic centrifugation, exosomal proteins flotillin-1 and TSG101 were identified in fractions consistent with exosomes. Electron microscopy demonstrated structures consistent in size and shape with exosomes. Exposure of mCCDC11 cells to the synthetic vasopressin analogue, desmopressin, did not affect exosomal flotillin-1 or TSG101 but increased aquaporin 2 (AQP2) in a dose- and time-dependent manner that was highly correlated with cellular AQP2 (exosomal AQP2 vs. cellular AQP2, Pearson correlation coefficient r = 0.93). To test whether the ratio of exosomal AQP2/flotillin-1 is under physiological control in vivo, rats were treated with desmopressin. The ratio of AQP2/flotillin-1 in the urinary exosome was significantly increased. Inter-cellular signalling by exosomes was demonstrated: exosomes from desmopressin-treated cells stimulated both AQP2 expression and water transport in untreated mCCDc11 cells (water flow across cells: control exosome treatment 52.8 ± 11 ?l cm(-2); AQP2-containing exosomes 77.4 ± 4 ?l cm(-2), P = 0.05, n = 4). In summary, the amount of AQP2 in exosomes released from collecting duct cells is physiologically regulated and exosomal AQP2 closely reflects cellular expression. Exosomes can transfer functional AQP2 between cells and this represents a novel physiological mechanism for cell-to-cell communication within the kidney. (hide)
EV-METRIC
0% (median: 22% of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Urine
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
Protein markers
EV: Flotilin1/ AQP2
non-EV:
Proteomics
no
Show all info
Study aim
Function
Sample
Species
Rattus norvegicus/rattus
Sample Type
Urine
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Equal to or above 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Flotilin1/ AQP2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
AQP2
Characterization: Particle analysis
None
1 - 2 of 2
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110064
species
Mus musculus
Rattus
norvegicus/rattus
sample type
Cell culture
Urine
cell type
NAY
NA
medium
EV Depleted
condition
NAY
NAY
separation protocol
(d)(U)C
DG
(d)(U)C
Exp. nr.
2
1
EV-METRIC %
33
0