Search > Results

You searched for: EV110014 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV110014 1/1 Mus musculus NAY (d)(U)C
DG
Chen T 2011 33%

Study summary

Full title
All authors
Chen T, Guo J, Yang M, Zhu X, Cao X
Journal
J Immunol
Abstract
Exosomes derived from dendritic cells or tumor cells are a population of nanometer-sized membrane ve (show more...)Exosomes derived from dendritic cells or tumor cells are a population of nanometer-sized membrane vesicles that can induce specific antitumor immunity. During investigation of the effects of hyperthermia on antitumor immune response, we found that exosomes derived from heat-stressed tumor cells (HS-TEX) could chemoattract and activate dendritic cells (DC) and T cells more potently than that by conventional tumor-derived exosomes. We show that HS-TEX contain chemokines, such as CCL2, CCL3, CCL4, CCL5, and CCL20, and the chemokine-containing HS-TEX are functionally competent in chemoattracting CD11c(+) DC and CD4(+)/CD8(+) T cells both in vitro and in vivo. Moreover, the production of chemokine-containing HS-TEX could be inhibited by ATP inhibitor, calcium chelator, and cholesterol scavenger, indicating that the mobilization of chemokines into exosomes was ATP- and calcium-dependent and via a lipid raft-dependent pathway. We consistently found that the intracellular chemokines could be enriched in lipid rafts after heat stress. Accordingly, intratumoral injection of HS-TEX could induce specific antitumor immune response more efficiently than that by tumor-derived exosomes, thus inhibiting tumor growth and prolonging survival of tumor-bearing mice more significantly. Therefore, our results demonstrate that exosomes derived from HS-TEX represent a kind of efficient tumor vaccine and can chemoattract and activate DC and T cells, inducing more potent antitumor immune response. Release of chemokines through exosomes via lipid raft-dependent pathway may be a new method of chemokine exocytosis. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: CD107a/ HSC70/ CD54/ Tf-receptor/ CD80/ HSP90/ CD86/ Annexin2/ HSP70/ CD63/ HSP60/ MHC2/ CD18/ MHC1
non-EV:
Proteomics
no
EV density (g/ml)
1.12-1.17
Show all info
Study aim
Function
Sample
Species
Mus musculus
Sample Type
Cell culture supernatant
EV-harvesting Medium
serum free
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Below or equal to 800 g
Between 800 g and 10,000 g
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
60
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
30
Highest density fraction
45
Orientation
Top-down
Speed (g)
100000
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
CD63/ HSP90/ HSP70/ Annexin2/ CD18/ CD54/ Tf-receptor/ CD80/ CD86/ CD107a/ HSP60/ HSC70/ MHC1/ MHC2
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Annexin2/ CD18/ CD54/ Tf-receptor/ CD80/ CD86/ CD107a/ HSP60/ HSC70/ MHC1/ MHC2
Characterization: Particle analysis
EM
EM-type
transmission EM
Image type
Wide-field
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV110014
species
Mus musculus
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
DG
Exp. nr.
1
EV-METRIC %
33