Search > Results

You searched for: EV100034 (EV-TRACK ID)

Showing 1 - 1 of 1

Experiment number
  • If needed, multiple experiments were identified in a single publication based on differing sample types, separation protocols and/or vesicle types of interest.
Species
  • Species of origin of the EVs.
Separation protocol
  • Gives a short, non-chronological overview of the different steps of the separation protocol.
    • (d)(U)C = (differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
Details EV-TRACK ID Experiment nr. Species Sample type Separation protocol First author Year EV-METRIC
EV100034 1/1 Rattus norvegicus/rattus NAY (d)(U)C
DG
Barrès C 2010 33%

Study summary

Full title
All authors
Barrès C, Blanc L, Bette-Bobillo P, André S, Mamoun R, Gabius HJ, Vidal M
Journal
Blood
Abstract
Reticulocytes release small membrane vesicles termed exosomes during their maturation into erythrocy (show more...)Reticulocytes release small membrane vesicles termed exosomes during their maturation into erythrocytes. Exosomes are intraluminal vesicles of multivesicular endosomes released into the extracellular medium by fusion of these endosomal compartments with the plasma membrane. This secretion pathway contributes to reticulocyte plasma membrane remodeling by eliminating certain membrane glycoproteins. We show in this study that galectin-5, although mainly cytosolic, is also present on the cell surface of rat reticulocytes and erythrocytes. In addition, in reticulocytes, it resides in the endosomal compartment. We document galectin-5 translocation from the cytosol into the endosome lumen, leading to its secretion in association with exosomes. Galectin-5 bound onto the vesicle surface may function in sorting galactose-bearing glycoconjugates. Fittingly, we found that Lamp2, a major cellular glycoprotein presenting galectin-reactive poly-N-acetylactosamine chains, is lost during reticulocyte maturation. It is associated with released exosomes, suggestive of binding to galectin-5. Finally, we reveal that the uptake of rat reticulocyte exosomes by macrophages is dependent on temperature and the mechanoenzyme dynamin and that exosome uptake is decreased by adding galectin-5. These data imply galectin-5 functionality in the exosomal sorting pathway during rat reticulocyte maturation. (hide)
EV-METRIC
33% (75th percentile of all experiments on the same sample type)
 Reported
 Not reported
 Not applicable
EV-enriched proteins
Protein analysis: analysis of three or more EV-enriched proteins
non EV-enriched protein
Protein analysis: assessment of a non-EV-enriched protein
qualitative and quantitative analysis
Particle analysis: implementation of both qualitative and quantitative methods. For the quantitative method, the reporting of measured EV concentration is expected.
electron microscopy images
Particle analysis: inclusion of a widefield and close-up electron microscopy image
density gradient
Separation method: density gradient, at least as validation of results attributed to EVs
EV density
Separation method: reporting of obtained EV density
ultracentrifugation specifics
Separation method: reporting of g-forces, duration and rotor type of ultracentrifugation steps
antibody specifics
Protein analysis: antibody clone/reference number and dilution
lysate preparation
Protein analysis: lysis buffer composition
Study data
Sample type
Cell culture supernatant
Sample origin
NAY
Focus vesicles
exosomes
Separation protocol
Separation protocol
  • Gives a short, non-chronological overview of the
    different steps of the separation protocol.
    • dUC = (Differential) (ultra)centrifugation
    • DG = density gradient
    • UF = ultrafiltration
    • SEC = size-exclusion chromatography
    • IAF = immuno-affinity capture
(d)(U)C
DG
Protein markers
EV: Tf-receptor/ Actin/ LAMP2
non-EV:
Proteomics
no
EV density (g/ml)
1.08-1.18
Show all info
Study aim
Biogenesis/Sorting
Sample
Species
Rattus norvegicus/rattus
Sample Type
Cell culture supernatant
EV-harvesting Medium
EV Depleted
Separation Method
(Differential) (ultra)centrifugation
dUC: centrifugation steps
Between 10,000 g and 50,000 g
Between 100,000 g and 150,000 g
Pelleting performed
Yes
Pelleting: time(min)
90
Density gradient
Only used for validation of main results
Yes
Lowest density fraction
0.5
Highest density fraction
2.5
Orientation
Top-down
Characterization: Protein analysis
Western Blot
Antibody details provided?
No
Detected EV-associated proteins
Tf-receptor/ LAMP2/ Actin
ELISA
Antibody details provided?
No
Detected EV-associated proteins
Tf-receptor/ LAMP2/ Actin
1 - 1 of 1
  • CM = Commercial method
  • dUC = differential ultracentrifugation
  • DG = density gradient
  • UF = ultrafiltration
  • SEC = size-exclusion chromatography
EV-TRACK ID
EV100034
species
Rattus
norvegicus/rattus
sample type
Cell culture
cell type
NAY
condition
NAY
separation protocol
(d)(U)C
DG
Exp. nr.
1
EV-METRIC %
33